

Functional Servicing and Stormwater Management Report

5782 6th Line East Township of Guelph/Eramosa (Ariss)

GMBP File: 420099-1 Revised January 2024

GUELPH | OWEN SOUND | LISTOWEL | KITCHENER | LONDON | HAMILTON | GTA

330 TRILLIUM DRIVE, UNIT D, KITCHENER ON N2E 3J2 P: 519-748-1440 WWW.GMBLUEPLAN.CA

TABLE OF CONTENTS

1.0	INTR		1
2.0	EXIS	STING CONDITIONS	1
	2.1 2.2 2.3 2.4	Land Use Topography Soils Groundwater	1 1 1 2
3.0	PROF	POSED DEVELOPMENT	3
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Site Grading Street. Kurtz Municipal Drain. Water Supply. Fire Protection Sanitary Servicing. Storm Servicing	3 3 3 4 4 4 4 4
4.0	STOF	RMWATER MANAGEMENT DESIGN	5
	4.1 4.2 4.3 4.4 4.5 4.6	Pre-Development Conditions Post-Development Conditions Stormwater Management Overview Routing Comparison to Pre-Development Flows Quality Control	
5.0	WAT		12
6.0	SEDI	IMENT AND EROSION CONTROL PLAN	13
7.0	CON	ICLUSIONS	14

LIST OF FIGURES

After Page

1.	Site Location	.1
2.	Draft Plan of Subdivision	.2
3.	Pre-Development Drainage Plan	.3
4.	Post-Development Drainage Area	.4

APPENDICES

- A Geotechnical Investigation, CMT Engineering Inc., 2021
- **B** Fire Reservoir Sizing Calculations
- C Pre-Development Conditions Stormwater Management Analysis
- D Post-Development Conditions Stormwater Management Analysis
- E Water Balance Calculations

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

5782 6TH LINE EAST

TOWNSHIP OF GUELPH/ERAMOSA (ARISS)

REVISED JANUARY 2024

GMBP FILE: 420099

1.0 INTRODUCTION

In support of approval of the Draft Plan of Subdivision application for the subject property, GM BluePlan Engineering Limited have prepared this Functional Servicing and Stormwater Management Report to document the proposed site servicing and stormwater management design for the site, and to document the updated draft plan (GSP Group, dated November 7, 2023).

The 7.80 ha site is located at 5782 6th Line East in the Township of Guelph / Eramosa (Ariss). The site is bound by agricultural land to the north, 6th Line East to the east, existing residential properties to the south, and the former Canadian Pacific Railway to the west of the site. **Figure 1** illustrates the site location.

2.0 EXISTING CONDITIONS

2.1 Land Use

The site is currently a vacant agricultural field. The lands to the south of the site have been developed for single family residential housing. The former Canadian Pacific Railway, located to the west of the site, has been developed as a walking trail system (Kissing Bridge Trail).

A portion of the Kurtz Municipal Drain also extended through the site. Improvements and relocation of a portion of the Kurtz Municipal Drain through the subject site was recently completed in 2022.

2.2 Topography

The land within the site has an average slope of 1.4% from the perimeter of the site towards the Kurtz Municipal Drain. Runoff generated from the site currently sheetflows overland to Branch 'A', 'C', 'E' and 'F' of the Kurtz Municipal Drain.

The existing site features are shown on the Existing Conditions and Removals Plan prepared by GM BluePlan Engineering Limited.

2.3 Soils

CMT Engineering Inc. completed a Geotechnical Investigation of the site in 2021. A total of six (6) boreholes were extended to approximately 6.10m below the existing surface to determine the soil properties.

Based on the CMT investigation, the topsoil depth on site ranges from 300 mm to 610 mm with an average depth of 520 mm. A sand and gravel fill were observed at Borehole 6 at an approximate thickness of 1,680 mm. Based on the finding from the Geotechnical report, the sand and gravel fill are likely backfill from a nearby field drain. Subsurface soils are mainly composed of sand and gravel and sandy silt. The sandy silt was observed to the termination depth of all six (6) boreholes.

A copy of the CMT Geotechnical Investigation is included in **Appendix A**.

2.4 Groundwater

As part of the Geotechnical Investigation conducted by CMT Engineering Inc in 2021, monitoring wells were installed at all six (6) of the borehole locations. It is noted that the groundwater level measurement of 0.66 metre and 3.18 meter below the existing ground surface. The Geotechnical investigation by the CMT Inc. mentioned that the typically fine-grained sandy silt soils have the potential to create perched groundwater in the overlying soils.

In addition to the Geotechnical Investigation by CMT Engineering Inc in 2021, a field investigation to measure groundwater levels was conducted as a part of the Hydrogeological Study by GM BluePlan Engineering Limited (5782 6th Line Hydrogeological Study, Feb 2023). The Hydrogeological study, based on data collected from June 2021 to February 2023, shown that the seasonal high groundwater levels range from roughly surface to nearly 2 metre below surface. The ground water levels investigated in this study are indicated on design drawing (General Servicing Plan: Drawing No. 3).

The observation of the relatively shallow groundwater in the site requires seepage control during construction. Within The CMT Inc report, it was mentioned that seepage should be handled by conventional construction dewater techniques such as pumping sump pits. And mentioned that the number of pumps could be increased during construction for heavy seepage.

The estimated percolation rate is from 20 min/cm to 30 min/cm for the sandy silty with some clay and trace gravel. It is expected that low volumes of precipitation infiltrate through the sandy silty material on site.

3.0 PROPOSED DEVELOPMENT

The proposed development generally consists of single-family estate style residential lots complete with internal road connecting to both 6th Line East and the existing Ariss Glen Drive. **Figure 2** illustrates the proposed Draft Plan of Subdivision.

3.1 Site Grading

The preliminary site grading for the proposed residential lots and internal road is shown on the grading plan prepared by GM BluePlan Engineering Limited.

The proposed residential lots have been graded to direct flows to both a rear yard swale and the roadside ditch. The rear yard swale allows a maximum of 0.3 metres surface ponding before runoff overflows to the relocated Branch C of the Kurtz Municipal Drain.

Proposed road (Street 'A') elevations are controlled by the current elevation of 6th Line East and Ariss Glen Drive. The proposed road has been graded to direct major storm overland flow to the Kurtz Municipal Drain.

The proposed roadways are proposed to be graded with slopes ranging from 0.5% to 1.4%, while lots are generally proposed to be graded with a minimum grade of 2.0 % as per Township of Guelph/ Eramosa Development Standards.

3.2 Street

The proposed road will be constructed with a minimum gradient of 0.5% connecting 6th Line East and Ariss Glen Drive. A rural road cross-section complete with roadside ditches will be provided throughout the development.

The proposed road will have a 20.0 m right of way, with a 6.5 m wide pavement. The details and crosssections are shown on the drawings designed by GM Blue Plan Engineering Limited (Sections 1, Sections 2, and Notes and Details).

3.3 Kurtz Municipal Drain

The project site is within the catchment area of Kurtz Municipal Drain. The Kurtz Municipal Drain was constructed in 1969 to provide a combination of open ditch and closed tile drainage for an approximately 665-ha of land. The Kurtz Municipal Drain is comprised of several branches (Branch A through Brand F) and extends approximately 2.2-km northwest of Ariss Valley Road along 6th Line East to 4th Line East and 8th Line East to Highway 86 at the edge of the existing Ariss Valley Golf and Country Club at the lower limits.

The site at 5782 6th Line East is a major junction of several Branches of the Kurtz Municipal Drain. Portions of Branch 'A', 'C', 'E', and 'F' of the Kurtz Municipal Drain are all located within the limits of the subject site.

Based on the hydrologic and hydraulic analysis in Floodplain Analysis Report completed by GM BluePlan Engineering Limited on July 2021, improvements to the Kurtz Municipal Drain were undertaken and completed in 2022 under the Drainage Act. The following is a brief summary of the improvements and relocations completed in 2022 for the Kurtz Municipal Drain:

- Branch 'C' the width of the channel was increased, and the channel re-aligned / relocated to match the previous improvements made to Brand 'C' as part of the Ussher's Creek Subdivision.
- Branch 'F' the width of the channel was increased, and the channel relocated to be on the adjacent lands to the north of the subject site. The previous Branch 'F' will be abandoned.

The improvements and relocations to the Kurtz Municipal Drain have been shown on the detailed design drawings prepared by GM BluePlan Engineering Limited.

3.4 Water Supply

The subject site does not have a municipal water supply system. As such, water supply to each of the proposed single family estate residential lots will be provided by private individual drilled wells on each lot. An analysis of the local aquifer's ability to supply water at a sufficient rate was completed as part of the Hydrogeological Assessment prepared by GM BluePlan Engineering Limited. Based on the analysis, there is ample supply available to meet the needs of the subdivision.

The preliminary location of each private well, along with the 15m minimum setback, from the septic system is shown on the grading and general servicing plans prepared by GM BluePlan Engineering Limited.

3.5 Fire Protection

Fire flow demands for developments were determined in accordance with the Water Supply for Public Fire Protection (Fire Underwriters Survey, 1999) and Ontario Building Code (OBC).

An approximate building area of 270 m² with an assumed 2-storey building height of 6.0m to underside of roof (excluding the basement) was utilized in the calculations. The water supply rate must be provided for a minimum duration of 30 minutes, as per paragraph 3.c of Section A-3.2.5.7 of Appendix A of the Ontario Building Code (2006).

The resulting FUS and OBC fire flow is 50 l/s and the minimum required water supply is 90,000 L. Design calculations for the fire reservoir tanks are provided in **Appendix B**.

Fire supply reservoirs will be provided to ensure adequate protection for the proposed development. To provide adequate water supply for the largest expected home within the subdivision, a storage tank with a capacity of 90,000 litres is required. It is proposed that two 50,000 L tanks be installed in the subdivision. The fire reservoirs will be precast concrete construction and will be designed to meet all the requirements of the Township of Guelph/Eramosa fire department and the Ontario Building Code.

3.6 Sanitary Servicing

Sanitary servicing for the proposed development will be provided by a private septic system complete with enhanced tertiary treatment located in the front yard of each lot.

The Hydrogeological Study has been conducted by GM BluePlan Engineering Limited to characterize the hydrogeological setting of the site and to assess the feasibility associated with the use of on-site sewage systems and private water supply wells. The detailed design of each private sewage system will be completed by others as part of the building permit application process and approval.

The proposed location of the private septic system is illustrated in the Servicing Plan prepared by GM BluePlan Engineering Limited.

3.7 Storm Servicing

The proposed road will be constructed with a rural cross-section. Stormwater runoff will be conveyed via the roadside ditches and rear-yard swales to the Kurtz Municipal Drain.

Driveway culverts will be a minimum of 450 mm diameter with 450 mm to 600 mm of cover, as per Township standards.

4.0 STORMWATER MANAGEMENT DESIGN

The studies, policies and guidelines used to develop the stormwater management plan are as follows:

- 1) The MOE Stormwater Management Planning and Design Manual, 2003
- 2) The MTO Drainage Management Manual, 1997
- 3) The Grand River Conservation Authority Sediment and Erosion Control Guidelines for Urban Construction, 2006
- 4) Development Standards for the Township of Guelph/Eramosa, 2004

The stormwater management criteria for the proposed development, are as follows:

- 1. Post-development flow rates for the site must be controlled to pre-development rates for the 5- and 100-year design storm events.
- 2. Provide enhanced level of quality control, 80% Total Suspended Solids (TSS) removal from all runoff leaving the site.
- 3. Major storm flows are to be routed overland to an appropriate outlet.

The method used to evaluate and design the stormwater management plan is as follows:

A four-hour duration rainfall event was used to generate the mass rainfall data required for the 25 mm design storm event. A three-hour duration rainfall event was used to generate the mass rainfall data required to model the 5, and 100-year design storms. The Chicago parameters and the total depth of rainfall data required for the 25 mm, 5 and 100-year design storm events are based on City of Guelph requirements and are in **Table 1**.

From the Soil Survey of Wellington County (Report No. 35 of the Ontario Soil Survey), the soils on-site are described as London Loam, with imperfect drainage characteristics. The MTO Drainage Management Manual hydrologic soil classification for London Loam is hydrologic soil group BC. A small strip of the watershed is comprised of Donnybrook Sandy Loam and Parkhill Loam, which have a hydrologic soil group of AB and BC respectively, as a result of the increased sand and reduced silt content.

	1-Year	5-Year	100-Year
a =	367.0	1593.0	4688.0
b =	5.0	11.000	17.000
C =	0.700	0.879	0.962
r =	0.394	0.400	0.400
Duration (minutes) =	240.000	180.000	180.000
Rainfall depth (mm)	31.211	47.240	87.263

Table 1: City of Guelph Chicago Rainfall Distribution Parameters

The hydrologic model Visual OTTHYMO was used to create the runoff hydrographs and to route the flows through the storage structures. The SCS infiltration method was utilized in the runoff calculations. The Pre-Development and Post-Development Catchment SCS Numbers (weighted calculations) utilized in the analysis have been provided in **Appendix C and D** respectively.

4.1 **Pre-Development Conditions**

For the pre-development conditions analysis, the site was modelled as two (2) drainage catchments. The pre-development condition drainage catchments are shown on **Figure 3** and described below. The existing conditions Visual OTTHYMO computer modelling is attached in **Appendix C**.

Catchment 10 (0.988 hectares, 0% impervious) represents existing farmlands and includes part of the municipal drains (Branch 'C', Branch 'A') in the site. Runoff generated from Catchment 10 sheetflows overland towards the Municipal Drain.

Catchment 20 (7.800 hectares, 0% impervious) represents the existing farmlands and includes part of the Municipal Drain (Branch 'F', Branch 'E' and Branch 'A'). Runoff from the catchment flows overland to the Municipal Drain. The boundary of south side of this catchment is matched with proposed municipal right-of-way that includes roadside ditch.

The total flow rate generated from Catchment 10 and 20 represents the allowable flow rate.

Table 2 lists the flow rates and total flow rate discharging from each catchment under pre-development conditions.

	5-Year	100-Year
Catchment 10	0.032 m³/s	0.108 m³/s
Catchment 20	0.378 m³/s	1.166 m³/s
Total Flow Rate	0.410 m³/s	1.274 m³/s

Table 2: Pre-Development Condition Flow Rates

4.2 Post-Development Conditions

For post-development analysis purposes, the site was modelled as nine (9) drainage catchments. The postdevelopment drainage catchments are shown on **Figure 4** and described below. The post-development Visual OTTHYMO computer modelling is attached in **Appendix D**.

Catchment 100 (0.463 hectares, 31% impervious) includes the proposed municipal right-of-way. Runoff from the catchment is directed to the roadside ditches and flows toward the improved municipal drain Branch 'C'.

Catchment 200 (1.889 hectares, 13% impervious) represents the front yard on the east side of the proposed residential lots and the municipal right-of-way. Given the proposed residential lots are designed with a split drainage concept, runoff from the catchment flows via overland to the proposed roadside ditch. The runoff along the roadside ditches is ultimately drained through the improved municipal drain Branch 'C'.

Catchment 300-301 (2.241 hectares, 5% impervious) represents backyard of the east side of the proposed residential lots at the improved municipal drain Branch 'C'. Runoff from the catchment flows via overland to the rear yard swale. The runoff from catchment 300 and 301 will be controlled by a rear yard swale with 1,000mm storm pipe storage systems and will be ultimately discharged through the improved municipal drain Branch 'C'.

Catchment 400 (0.369 hectares, 47% impervious) includes the proposed municipal right-of-way. Runoff from the catchment is directed to the roadside ditch and will be controlled by a proposed infiltration gallery before discharging to the improved municipal drain Branch 'C'.

Catchment 500 (1.789 hectares, 17% impervious) represents the front yard on the west side of the proposed residential lots and the municipal right-of-way. Runoff from the catchment flows overland to the

proposed roadside ditch ultimately discharging to the improved municipal drain Branch 'C'.

Catchment 600-601 (1.52 hectares, 6% impervious) represents the backyard of the west side of the proposed residential lots. Runoff from the catchment flows overland to the rear yard swale and will be controlled by a rear yard swale with oversized 1000 mm storm pipe storage systems ultimately discharging to the improved municipal drain Branch 'C'.

Catchment 700 (0.49 hectares, 14% impervious) includes improved municipal drain Branch 'C' and 'A' and the proposed infiltration gallery connected to the west side roadside ditch. Runoff from the catchment will be discharged to the improved Kurtz Municipal Drain.

The post-development conditions flow rates were calculated using Visual OTTHYMO software to route the hydrographs.

Table 3 identifies the post-development uncontrolled flow rates generated from the site.

Catchment	5-Year	100-Year
Catchment 100	0.102 m ³ /s	0.216 m ³ /s
Catchment 200	0.117 m ³ /s	0.376 m³/s
Catchment 300 & 301	0.121 m ³ /s	0.410 m ³ /s
Catchment 400	0.089 m ³ /s	0.181 m³/s
Catchment 500	0.115 m ³ /s	0.368 m³/s
Catchment 600 & 601	0.083 m ³ /s	0.280 m ³ /s
Catchment 700	0.047 m ³ /s	0.136 m³/s
Total Flow Rate	0.606 m ³ /s	1.889 m³/s

Table 3: Post-Development Uncontrolled Flow Rates

4.3 Stormwater Management Overview

In line with current practices and guidelines, the stormwater management approach for the subject site is designed as a "treatment train" to remove sediments and any absorbed contaminants prior to the discharge of runoff from the development to the receiving outlets. The "treatment train" approach will include a combination of lot level, conveyance and end-of-pipe best management practices and is proposed to filter and remove sediments from stormwater runoff prior to discharging to the municipal drain.

The stormwater management system has been designed to control the post-development flow to the predevelopment condition flow rates. The stormwater management system consists of subsurface perforated storm pipe storage systems through rear yard swales and roadside ditches.

a) Roof Drainage to Ground Surface

The proposed lot grading throughout the development is split drainage with driveways and front yards draining towards the road, and roof and rear yard areas draining towards the rear of the lot.

The roof runoff from most rainfall events will be filtered across the grassed area with some minor filtration to the underlying soils. The runoff from any event large enough to generate flow to the rear yard swale system will be adequately filtered by the grass en-route.

The grading of the lots will be to minimum gradients of 2%, as per the current Township of

Guelph/Eramosa standards.

b) Detention of Stormwater Runoff

As mentioned above, the lots are designed as split drainage system and, as such the grading in the rear and front yard areas will direct stormwater runoff towards rear yard swales and roadside ditches respectively.

The rear yard areas have been designed to accommodate runoff from up to 100-year rainfall event. The rear yard swales drainage consists of 1050 mm dia. perforated storm pipe storage systems with an orifice at the outlet. The locations of the orifices and sizes are shown on the servicing plan. Major storm flows exceeding the capacity of the perforated storm pipe storage systems will be overflowed into the improved Kurtz Municipal Drain.

The runoff from the west side roadside ditch will be controlled by the proposed infiltration gallery consisting of 1050 mm diameter perforated storm pipe and clear stone with a 150 mm orifice at the outlet. The proposed infiltration gallery will accommodate runoff from up to 100-year rainfall event.

Orifice controls, located at the downstream outlet of each perforated storm pipe storage system, will provide quantity control prior to discharging to the relocated Kurtz Municipal Drain. The subsurface storm pipe storage systems have been designed with sufficient capacity to attenuate the runoff from the post-development conditions.

4.4 Routing

The hydrologic model Visual OTTHYMO was used to properly model the effect of detention volumes. Details of the proposed stormwater volumes, flow rate are found in **Appendix D**.

Table 4 and 8 show the summary of the routing results from catchment 300, 301, 400, 600, and 601 with the available stage/storage/ discharge capacities.

	Ava	ilable Capa	city	Actual Capacity Used		
Control	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m
Bottom of Stone	0.000	0.000	345.90			
Pipe Invert (Orifice 180mm)	0.0019	29.03	346.20			
5 Year Storm				0.033	73.0	346.48
Pipe Overt	0.0713	197.05	347.20			
100 Year Storm				0.080	221.0	347.45
Top of Stone	0.0821	226.08	347.50			

 Table 4: Subsurface 1,000mm Perforated Storm Pipe Storage (Catchment 300 at Lot 13, 14, 15 & 16)

 Stage/Storage/Discharge Comparison

Table 5: Subsurface 1,000mm Perforated Storm Pipe Storage (catchment 301 at Lot 8, 9, 10, 11, & 12) – Stage/Storage/Discharge Comparison

	Ava	ilable Capa	city	Actual Capacity Used		
Control	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m	Peak Flow m ³ /s	Storage Volume m ³	Storage Elevation m
Bottom of Stone	0.000	0.000	344.50			
Pipe Invert (Orifice 190mm)	0.0036	55.91	344.80			
5 Year Storm				0.042	154.0	345.12
Pipe Overt	0.0821	379.50	345.80			
100 Year Storm				0.094	431.0	346.08
Top of Stone	0.095	106.99	346.10			

	Ava	ilable Capa	city	Actual Capacity Used		
Control	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m
Bottom of Stone	0.000	0.00	344.20			
Pipe Invert (Orifice 150mm)	0.0231	24.00	344.50			
5 Year Storm				0.035	56.0	344.78
Pipe Overt	0.0531	112.00	345.40			
100 Year Storm				0.057	126.0	345.57
Top of Stone	0.0599	136.00	345.70			

Table 7: Subsurface 1,000mm Perforated Storm Pipe Storage (catchment 600 at Lot 1, 2, 3, 4, & 5) – Stage/Storage/Discharge Comparison

	Ava	ilable Capa	city	Actual Capacity Used		
Control	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m
Bottom of Stone	0.000	0.000	344.32			
Pipe Invert (Orifice 220mm)	0.0017	26.42	344.62			
5 Year Storm				0.040	61.0	344.87
Pipe Overt	0.1033	179.33	345.62			
100 Year Storm				0.102	176.0	345.60
Top of Stone	0.1194	205.74	345.92			

Table 8: Subsurface 1,000mm Perforated Storm Pipe Storage (catchment 601 at Lot 6 & 5) – Stage/Storage/Discharge Comparison

	Ava	ilable Capa	city	Actual Capacity Used		
Control	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m	Peak Flow m³/s	Storage Volume m ³	Storage Elevation m
Bottom of Stone	0.000	0.000	344.64			
Pipe Invert (Orifice 180mm)	0.0019	29.38	344.94			
5 Year Storm				0.045	73.0	345.22
Pipe Overt	0.1037	199.40	345.94			
100 Year Storm				0.104	200.0	345.95
Top of Stone	0.1198	228.77	346.24			

4.5 Comparison to Pre-Development Flows

Table 9 identifies the post-development controlled flow rates generated from the site.

Catchment	5-Year	100-Year
Catchment 100 (uncontrolled)	0.102 m ³ /s	0.216 m³/s
Catchment 200 (uncontrolled)	0.117 m³/s	0.376 m³/s
Catchment 300 & 301 (controlled)	0.042 m ³ /s	0.094 m³/s
Catchment 400 (controlled)	0.035 m³/s	0.057 m³/s
Catchment 500 (uncontrolled)	0.115 m³/s	0.368 m³/s
Catchment 600 & 601 (controlled)	0.045 m³/s	0.104 m³/s
Catchment 700 (uncontrolled)	0.047 m³/s	0.136 m³/s
Total Flow Rate	401 m³/s	1.143 m³/s

Table 9: Post-Development controlled Flow Rates

Table 10 summarizes the comparison of pre- and post-development flows from the site.

Table 10: Com	parison of Pre- and Post-Development	Flows

	5-Year	100-Year
Pre-Development Flow Rate	0.410 m³/s	1.274 m³/s
Post-Development Flow Rate	0.401 m³/s	1.143 m³/s

The 5-year post-development flows have been controlled to 0.401 m³/s, which is 98% of the existing condition 5-year design storm flow rate. The 100-year post-development flows have been controlled to 1.143 m³/s, which is 90% of the existing 100-year design storm flow rate.

Therefore, the post-development flow rates discharging from the site during the 5 and 100-year design storm events are less than the pre-development flow rates from the site.

4.6 Quality Control

The objective of the post development quality control for the site is to achieve 80% long-term suspended solid (TSS) removal prior to discharging stormwater to the downstream as per the Ministry of the Environment Stormwater Management Planning and Design Manual, dated March 2003.

The proposed rear yard areas being added to the site as a result of the development consist of a building rooftop and grassed rear yard area. It is considered that there are no quality control impacts as a result of the proposed development in that area. As such, the discharge from Catchment 300 to 301 and from Catchment 600 to 601 area is considered "clean", and further quality control measures have not been proposed for those areas.

The Catchment 400 area represents the municipal right-of-way and the runoff from the catchment is controlled by the proposed infiltration gallery. Based on Table 3.2 of the Ministry of Environment Stormwater Management Planning and Design Manual 2003, an infiltration facility requires quality storage of 28m³/ha at 47% impervious level. As such, the catchment 400 requires quality storage of 10.3 m³ (28m³/ha x 0.369 ha) and the proposed infiltration gallery has a storage volume of 135.90 m³, which meets the water quality criteria required.

The rooftop and landscape area of the Catchment 200 and 500 are 1.75 and 1.55 hectares, respectively. The remaining area of 0.14 and 0.17 hectares, respectively, are impervious and will be treated by grassed swales prior to discharge from the site to the Municipal Drain.

The Catchment 100 area represent the municipal right-of-way and roadside ditches. The Ministry of Environment Stormwater Management Planning and Design Manual 2003 requires that grassed swales designed for water quality enhancement should convey the peak flow from a 4-hour, 25 mm Chicago Storm with a velocity of less than 0.5 m/s.

Based on the flow characteristics for the roadside ditches as provided in Table 11, adequate water quality treatment will be provided in the roadside ditches. The detailed calculation results are shown in **Appendix D**.

Roadside Ditch Location	Flow Length (m)	Average Flow Slope (%)	Flow Rate (m³/s)	Flow depth (m)	Flow Velocity (m/s)
Catchment 100	460	1.00	0.037	0.156	0.50
Catchment 200	460	1.00	0.043	0.165	0.52
Catchment 500	280	1.00	0.034	0.151	0.49

Table 11: Flow Characteristics of Roadside Ditches for 25 mm, 4-hour, Chicago Storm

5.0 WATER BALANCE

A water balance analysis has been completed on the subject site using the catchment information.

Based on the Canadian Climate Normals for the Fergus Shand Dam station from 1981 to 2010, the average annual precipitation for the area in which the site is located is estimated to be 945.9 mm.

It has been estimated that the potential annual evapotranspiration for this area is 563.3 mm for pervious surfaces. Therefore, 382.6 mm remains available for infiltration and runoff.

Based on the subsurface soil's information provided by CMT Engineering Inc, the potential infiltration across the site has been estimated as 191.3 mm annually, with the remaining 191.3 mm being runoff.

Based on the annual infiltration rates, as shown on the Monthly Water Balance calculations attached in **Appendix E**, the existing annual average groundwater recharge occurring within the 8.79-hectare site is estimated to be 16,814 m³. Under post-development conditions, the annual natural groundwater recharge occurring on-site is estimated to be 16,511 m³ prior to the addition of the runoff volume infiltrated in the stormwater management facility.

Under existing conditions, the annual average runoff from the site is estimated to be 16,814 m³. As a result of the proposed development the impervious area (rooftop and paved surfaces) of the site increases which causes an increase in runoff volume to 20,275 m³ per year prior to the addition of the runoff volume infiltrated in the stormwater management facility.

As the proposed stormwater management facility, the infiltration galleria has been designed with a total volume of 120.9m³. With the addition of the site runoff volume infiltrated in the proposed stormwater management facility, the comparison between existing conditions and post-development recharge and runoff volumes are summarized in Table 11 below.

	Total Estimated Recharge	Total Estimate Runoff
Existing Conditions	16,814 m ³	16,814 m³
Post-Development Conditions	17,612 m ³	20,275 m ³
Change from Existing Conditions	+5%	+21%

Table 11: Summary of Recharge and Runoff Volume

Therefore, the infiltration targets for the site are being achieved through the infiltration occurring in the stormwater management facility.

6.0 SEDIMENT AND EROSION CONTROL PLAN

Primary sediment control will be achieved with the installation of silt fence around the property boundary. The silt fence will eliminate the opportunity for water borne sediments to be transported from the site.

Temporary rock check dams will be installed in rear and side yard swales after the initial grading has been completed to slow the flow rates and promote the settlement of water borne sediments before they reach the silt fences and ponds.

A silt fence will be placed around any outlet structures discharging to the Kurtz Municipal Drain to restrict the movement of sediment.

The grates of any catch basin structures installed on site will also be wrapped in filter cloth. This will be maintained until all building and landscaping has been completed.

Inspection and maintenance of all silt fencing, and erosion and sediment control measures will start after installation is complete. These features will be inspected on a weekly basis or after a rainfall event of 13 mm or greater. Maintenance will be carried out, within 48 hours, on any part of the facility found to need repair.

Once construction has been substantially completed, the silt fence will be removed from within the pond, any accumulated sediment will be removed, and the landscaping and planting of the ponds will be completed.

After construction of the complete development, erosion and sediment transport will be minimal.

7.0 CONCLUSIONS

In summary, the features of the design for the proposed development are as follows:

- 1. Sanitary servicing will be provided by lot level private septic system complete with enhanced tertiary treatment.
- 2. Water servicing will be provided by a private well for each lot which is to be designed and constructed by others.
- 3. Stormwater convey systems will be designed to convey the 5-year design storm event, while the major overland flows from the site will be directed overland towards the Kurtz Municipal Drain.
- 4. The perforated storm pipe storage systems are designed to function as a detention storage.
- 5. The post-development flow rates discharging from the site during the 5 and 100-year design storm are less than the pre-development flow rates from the site.
- 6. Enhanced level (80% TSS Removal) quality control for the site will be provided via the perforated storm pipe storage systems and grassed roadside ditches.
- 7. The stormwater management systems meet the current Provincial and Municipal guidelines.
- 8. The principles of "Stormwater Management Practices", the Ministry of Environment Stormwater Management Planning and Design Manual 2003 have been used in the design of the stormwater management system.

All of which is respectfully submitted.

GM Blue Plan Engineering LIMITED Per:

(MK M CLA

Angela Kroetsch, P.Eng. AK/jl

\gamsby.local\GMProjects\Kitchener\420-2020\420099-1 6th Line Aris Draft Plan Approval\Design Phase\Reports - SWM, FSR, Design Brief, etc\420099 - Functional Servicing and Stormwater Management Report-Revised_2024-01-30.docx

FILE:W:/Kitchener/420-2020/420099 - Will O Homes 6th Line East Ariss/Drawings/420099 SVMI.dwg LAYOUT:FIGURE 1 LAST SAVED BY:Sgasior, 1/25/2024 2:04:32 PM PLOTTED BY:Steve Gasior - GM BluePlan 1/25/2024 2:07:10 PM

Subject Property	5782 6TH LINE EAST TOWNSHIP OF GUELPH/ERAMOSA (ARISS)	
cession 4 J River of Pilkington -Eramosa Igton		
Ariss		
UNITS AREA (hs.) 16 6.67 0.07 1.05 16 7.79		
	<u>SCALE = N.T.S</u> JANUARY 2024	
igi and I ARE AS SHOWN ON		
AND SUBMIT THIS DRAFT PLAN DATE DTO BE SUBDIVIDED AND THEIR ORRECTLY SHOWN.		
DATE REVISIONS November 7, 2023	PROPOSED DEVELOPMENT Figure No. 2	
	BluePlan ENGINEERING	

APPENDIX A

Geotechnical Investigation CMT Engineering Inc., 2021

GEOTECHNICAL INVESTIGATION

PROPOSED RESIDENTIAL DEVELOPMENT 5782 6th LINE EAST ARISS, ONTARIO

CMT Project 21-209.R01

Prepared for:

Will-O Homes

June 10, 2021

CMT Engineering Inc. 1011 Industrial Crescent, Unit 1 St. Clements, Ontario NOB 2M0 Tel: 519-699-5775 Fax: 519-699-4664 www.cmtine.net

June 10, 2021

Will-O Homes Box 187 Petersburg, Ontario N0B 2H0

Attention: Mr. Kevin Smith

Dear Sir:

Re: Geotechnical Investigation Proposed Residential Development 5782 6th Line East Ariss, Ontario

As requested, CMT Engineering Inc. conducted a geotechnical investigation at the above referenced site, and we are pleased to present the enclosed report.

We trust that this information meets your present requirements, and we thank you for allowing us to undertake this project. Should you have any questions, please do not hesitate to contact our office.

Yours truly,

eenen

Jake Feeney B.Eng., EIT.

ks

21-209.R01

TABLE OF CONTENTS

		Page
1.0 INTH	RODUCTION	1
2.0 EXIS	STING SITE CONDITIONS	1
3.0 FIEL	D AND LABORATORY PROCEDURES	1
4.0 SUB	SOIL CONDITIONS	2
4.1.	Topsoil	
4.2.	Sand and Gravel Fill	
4.3.	Sand and Gravel	3
4.4.	Sandy Silt	3
4.5.	Groundwater	4
5.0 DISC	CUSSION AND RECOMMENDATIONS	4
5 1	Sancioschility and Illtimate Limit Programs	5
5.1. 5.2	Serviceability and Olumate Limit Plessure	
5.2.	Seil Design Deremeters	······ / 7
5.5. 5.4	Soli Design Falameters	······ / 7
5.4. 5.4	1 Tongoil Stringing/Vagatation Domoval	/
5.4.	 Topson Suppling/ vegetation Removal Demoval/Dalagation of Existing During 	0 0
5.4. 5.4	2. Removal/Relocation of Existing Burled Piping	ð o
5.4. 5.4	5. FIII Reilloval	0
5.4.	4. Sile Grading	9
5.5.	Slab or Crade/Madulus of Subarada Departier	10
5.0. 5.7	Stab-on-Orade/Modulus of Subgrade Reaction	11
5./. 5.0	Excavations	
5.8. 5.0	Construction Dewatering Considerations	
5.9.	Service Pipe Bedding	
5.10.	Perimeter Building Drainage, Foundation Wall Backfill and Trench Backfill	
5.11.	Pavement Design/Drainage	
5.12.		
5.13.	Percolation Rate (1-time) Determination	
5.14.	Excess Soil Management	
5.14	4.1. Chemical Testing was NOT Undertaken	
5.14 5.15	4.2. ICLP Requirement	
0.15.		
6.0 SITE	INSPECTION	
7.0 LIM	ITATIONS OF THE INVESTIGATION	22
Drawing	1 - Site Location Map	
Drawing	2 - Site Plan Showing Borehole Locations	
Appendi	x A - Borehole Logs	
Appendi	x B - Grain Size Analyses	
Appendi	x C - Well Records	

1.0 INTRODUCTION

The services of CMT Engineering Inc. (CMT Inc.) were retained by Mr. Kevin Smith of Will-O Homes to conduct a geotechnical investigation for the proposed residential development to be constructed at 5782 6th Line East in Ariss, Ontario. The location of the site is shown on Drawing 1.

It is understood that the project will involve the construction of seventeen (17) estate homes, approximately 2,500 ft² to 3,500 ft² in size. It is understood that each home is proposed to have roughly one (1) three-car garage, four (4) bedrooms and four (4) to five (5) bathrooms. Private Class IV septic systems and drilled wells are proposed to service the residences.

The purpose of the geotechnical investigation was to assess the existing soil and groundwater conditions encountered in the boreholes. Included in the assessment are the soil classification and groundwater observations, as well as comments and recommendations regarding geotechnical resistance (bearing capacity); serviceability limit states (anticipated settlement); dewatering considerations; site classification for seismic site response; recommendations for site grading, site servicing, excavations and backfilling; recommendations for slab-on-grade construction; pavement design/drainage; soil design properties; and a summary of the laboratory results.

The recommendations provided in this report are solely based on the information obtained from the boreholes advanced on the subject site.

2.0 EXISTING SITE CONDITIONS

The site of the proposed residential development is located on the southwest side of 6th Line East in Ariss. The site is bounded by 6th Line East to the northeast, residential property to the southeast, Kissing Bridge Trail and Wellington Road 86 to the southwest, and agricultural fields to the northwest. The site currently comprises agricultural land. In general, the site topography is undulating slightly throughout the proposed construction area.

3.0 FIELD AND LABORATORY PROCEDURES

The field investigation was conducted on May 13 and 26, 2021 and comprised the advancement of six (6) boreholes (referenced as Boreholes 1 to 6), utilizing a Geoprobe 7822DT drillrig operated by employees of CMT Drilling Inc. Boreholes 1 to 6 were advanced to depths of approximately 6.10 m (20.00 ft) below the existing ground surface in the area of the proposed development. Prior to the field investigation being carried out, underground service locates were undertaken to ensure that existing utilities would not be damaged, or personnel injured.

Standard penetration testing and sampling was carried out in Boreholes 1 to 6 using a 38 mm inside diameter split spoon sampling equipment and an automatic hammer, in accordance with ASTM D1586 "Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel

Sampling of Soils". SPT soil sampling was generally conducted at 0.76 m (2.5 ft) intervals to 3.05 m (10.00 ft) and every 1.52 m (5.00 ft) thereafter, to borehole termination. Macro core (MC5) direct push sampling was typically conducted between the SPT soil samples conducted below 3.05 m (10.00 ft) depth. Technical staff from CMT Inc. observed the drilling operation and collected and logged the recovered soil samples. A small portion of each sample was placed in a sealed, marked jar for moisture content determinations.

Representative soil samples from boreholes at the following depths were submitted to the CMT Inc. laboratory in St. Clements, Ontario for grain size analyses:

- Borehole 1 depth 2.29 m to 2.90 m (7.50 ft to 9.50 ft)
- Borehole 2 depth 0.76 m to 1.37 m (2.50 ft to 4.50 ft)
- Borehole 3 depth 3.05 m to 3.66 m (10.00 ft to 12.00 ft)
- Borehole 4 depth 1.52 m to 2.13 m (5.00 ft to 7.00 ft)
- Borehole 5 depth 1.52 m to 2.13 m (5.00 ft to 7.00 ft)
- Borehole 6 depth 3.05 m to 3.66 m (10.00 ft to 12.00 ft)

The borehole logs are provided in Appendix A and the resulting grain size analyses can be found in Appendix B.

Monitoring wells were installed at all six of the borehole locations and comprised 3.05 m (10.00 ft) long slotted screens. The monitoring well screens were backfilled with #2 filter sand and the riser pipes were backfilled with bentonite. The monitoring wells were installed in accordance with the Ontario Water Resources Act, Regulation 903 (O. Reg. 903) by well technicians licensed by the Ministry of the Environment, Conservation and Parks (MECP). The well records are provided in Appendix C.

The ground surface elevations of the boreholes were surveyed by GM BluePlan Engineering Limited prior to the commencement of drilling. The ground surface elevations at the borehole locations ranged from approximately 345.50 m to 350.22 m. The locations of the boreholes are shown on Drawing 2.

4.0 <u>SUBSOIL CONDITIONS</u>

The soils encountered in the boreholes are described briefly below and a more detailed stratigraphic description is provided on the borehole logs in Appendix A. The following paragraphs have been simplified into terms of major soil strata. The soil boundaries indicated have been inferred from non-continuous samples and observations of sampling and drilling resistance and typically represent transitions from one soil type to another rather than exact planes of geological change. Further, the subsurface conditions are anticipated to vary between and beyond the borehole locations.

4.1. <u>Topsoil</u>

Loose, moist, dark brown, silty, organic topsoil was encountered at the surface of all borehole locations. The thickness of the topsoil was observed to range from about 300 mm to 610 mm (average 520 mm) at the borehole locations, however, the thickness of the topsoil is anticipated to vary throughout the site. Materials noted as topsoil in this report were classified based on visual and textural evidence. Testing of organic content or for other nutrients was not carried out.

4.2. Sand and Gravel Fill

Brown sand and gravel fill with trace silt was encountered underlying the topsoil at Borehole 6. The sand and gravel fill had an approximate thickness of 1,680 mm. The sand and gravel fill was considered to be compact to dense, with SPT N-values ranging from about 13 to 47 blows per 0.30 m (average 30 blows per 0.30 m). The sand and gravel fill soils are considered to be moist to saturated, with measured moisture contents ranging from about 6.7% to 13.3% (average 10.0%). It should be noted that the sand and gravel fill is likely backfill from a nearby field drain.

4.3. Sand and Gravel

Brown to reddish brown sand and gravel with trace silt was encountered underlying the sandy silt at Boreholes 2 and 5 and underlying the topsoil at Borehole 4. The sand and gravel was considered to be compact to very dense, with SPT N-values of about 19 blows per 0.30 m. The sand and gravel soils are considered to be moist to saturated, with measured moisture contents ranging from about 6.1% to 16.3% (average 11.2%).

4.4. <u>Sandy Silt</u>

Grey to brown sandy silt to sand and silt with trace to some clay and trace to no gravel was encountered underlying the topsoil at Boreholes 1, 2, 3 and 5; underlying the sand and gravel at Boreholes 2, 4, and 5; and underlying the sand and gravel fill at Borehole 6. The sandy silt was observed to extend to the termination depth of all six (6) boreholes. Oxidation staining was observed within the sandy silt at Boreholes 3 and 4. The sandy silt was considered to be very loose to very dense, with SPT N-values ranging from 4 to greater than 100 blows per 0.30 m (average 42 blows per 0.30 m). The sandy silt soils are considered to be moist to wet, with measured moisture contents ranging from about 5.5% to 17.6% (average 9.3%).

4.5. <u>Groundwater</u>

Monitoring wells were installed in all boreholes to measure the static groundwater levels. The water levels were measured by CMT Inc. personnel on June 8, 2021.

The measured elevations of water in the monitoring wells, the estimated wet to saturated zones, as well as the ground surface and bottom of borehole elevations, are provided in the following table:

Borehole No.	Ground Surface Elevation (m)	Measured Elevation of Water in Monitoring Well June 8, 2021 (m)	Estimated Wet to Saturated Zones (m)	Bottom of Borehole Elevation (m)
1	349.18	347.86 (1.32)		343.08
2	345.58	344.16 (1.42)	344.97 to 343.90	339.48
3	345.50	344.09 (1.41)		339.40
4	350.22	347.04 (3.18)	347.93 to 347.17	344.12
5	347.45	345.92 (1.53)	343.18 to 342.88	341.35
6	349.04	348.38 (0.66)	347.52 to 346.75	342.94

It should be noted that the typically fine-grained sandy silt soils have the potential to create perched groundwater in the overlying soils. Groundwater conditions (particularly perched water) are generally dependent on the amount of precipitation, control of surface water, as well as the time of year, and can fluctuate significantly in elevation and volume.

Recommendations with respect to dewatering conditions are provided in Section 5.8 of this report.

5.0 DISCUSSION AND RECOMMENDATIONS

This section of the report provides CMT Inc.'s interpretation of the factual geotechnical data obtained during the investigation and is intended for the guidance of the owner and design engineer. Where comments are made on construction, they are provided only to highlight those aspects which could affect the design of the project. Contractors bidding on or undertaking the work should make their own independent interpretation of the factual subsurface information provided as it affects their proposed construction means and methods, equipment selection, scheduling, pricing, and the like.

Utilizing the information gathered during the geotechnical investigation and assuming that the borehole information is representative of the subsoil conditions throughout the site, the following comments and recommendations are provided.

5.1. <u>Serviceability and Ultimate Limit Pressure</u>

Based on the information obtained from the boreholes, the following table provides a summary of the estimated geotechnical reaction at the Serviceability Limit State (SLS) and the factored geotechnical resistance at the Ultimate Limit State (ULS) at the various elevations, including soil type:

MW No.	Ground Surface Elevation (m)	SLS kPa (psf)	ULS kPa (psf)	Estimated Highest Founding Elevations (m)	Depth Below Existing Grade to Founding Elevation (m)	Soil Type
		75 (1,500)	115 (2,300)	348.52 to 347.66	0.66	
1	349.18	150 (3,000)	225 (4,500)	347.66 to 343.08 (termination)	1.52	Sandy Silt
2	345.58	150 (3,000)	225 (4,500)	344.36 to 339.48 (termination)	1.22	Sandy Silt/Sand and Gravel
	245.50	75 (1,500)	115 (2,300)	344.59 to 343.98	0.91	Sandy Silt
3	345.50	150 (3,000)	225 (4,500)	343.98 to 339.40 (termination)	1.52	Clayey Silt
4	350.22	150 (3,000)	225 (4,500)	349.31 to 344.12 (termination)	0.91	Sand and Gravel/Sandy Silt
5	347.45	150 (3,000)	225 (4,500)	346.69 to 341.35 (termination)	0.76	Sandy Silt/Sand and Gravel
		150 (3,000)	225 (4,500)	348.13 to 345.99	0.91	Sand and
6	349.04	75 (1,500)	115 (2,300)	345.99 to 342.94 (termination)	3.05	Gravel Fill/Sandy Silt

*Highest founding elevations presented above do not take into account groundwater conditions.

Based on the bearing capacities and elevations provided in the table above, soils suitable to support conventional foundations designed with an estimated bearing capacity of 150 kPa (3,000 psf) at SLS and 225 kPa (4,500 psf) at ULS were typically encountered underlying the topsoil and loose upper soils encountered in the boreholes. Soils suitable to support conventional foundations designed with an estimated bearing capacity of

75 kPa (1,500 psf) at SLS and 115 kPa (2,300 psf) at ULS were typically encountered below the topsoil in the borehole locations. It is recommended that footings be founded at least one (1) footing width (minimum 0.5 m) above the high groundwater table at the site. Depending on the groundwater conditions at the time of construction, it may be necessary to install a granular drainage layer or mud mat to provide a suitable base for the foundations. This will depend on the bearing capacity required for the founding strata. If required, the granular drainage layer must conform to the requirements listed in Section 9.14.4 of the OBC 2012. The founding soils must be assessed at the time of construction by qualified geotechnical personnel in order to confirm their founding suitability.

Should footings be designed to be constructed at elevations higher than the elevations indicated in the table above, then structural fill will be required in order to achieve the design grades for the proposed foundations. The serviceability limit pressure for granular structural fill placed and compacted in accordance with Section 5.4.4 of this report is estimated to be at least 150 kPa (3,000 psf). Alternatively, lean mix concrete fill could be used for this application.

Footings could also be stepped down to bear on approved undisturbed founding soils. Due to the presence of wet to saturated soils on the subject site, it is imperative that the founding soils be assessed at the time of construction by qualified geotechnical personnel in order to confirm their suitability.

Footings founded on soil may be placed at a higher elevation relative to another footing provided that the slope between the outside face of the footings is separated by a minimum slope of 10 horizontal to 7 vertical (10H:7V) with an imaginary line projected from the underside of the footings.

It is recommended that the structural foundation drawings be cross-referenced with site servicing drawings to ensure that service pipes do not conflict with building foundations (including the zone of influence down and away from the footings).

With respect to the Serviceability Limit State (SLS), the total and differential footing settlements are not expected to exceed the generally acceptable limits of 25 mm (1") and 19 mm (3/4") respectively.

All exterior footings must be provided with a minimum of 1.2 m of soil cover or equivalent thermal insulation in order to provide protection against frost action.

CMT Inc. would be pleased to review design drawings when they become available and provide further recommendations with respect to bearing and foundation elevations.

5.2. <u>Seismic Site Classification</u>

The site classification for seismic response in Table 4.1.8.4 of the 2012 Ontario Building Code relates to the average properties of the upper 30.0 m of strata. The information obtained in the geotechnical field investigation was gathered from the upper 6.10 m of strata. Based on the information gathered in the geotechnical field investigation, the site classification for seismic site response would be considered Site Class D (stiff soils) for structures founded on the native soils or structural fill at the recommended founding elevations provided in Section 5.1 of this report. The structural engineer responsible for the design of the structure should review the earthquake loads and effects.

5.3. <u>Soil Design Parameters</u>

The following table provides estimated soil design parameters for imported granular fill, as well as the existing native soils encountered on-site. It should be noted that earth pressure coefficients (Ka, Kp, Ko) provided are for flat ground surface conditions and will differ for areas with slopes or embankments.

The estimated soil design parameters can be utilized for the design of perimeter shoring, foundations and retaining walls, as required.

Soil Type	Soil Density (kg/m³)	Friction Angle (Degree)	Coefficient of Active Pressure (K _a)	Coefficient of Passive Pressure (K _p)	Coefficient of At-Rest Pressure (K ₀)	Coefficient of Friction (µ)	Cohesion (Undrained) (kPa)
Imported Granular 'A'/ Granular 'B' (OPSS 1010)	2,100	34°	0.28	3.54	0.44	0.45	0
Sandy Silt	1,750	30°	0.33	3.00	0.50	0.38	0
Sand and Gravel	1,900	34 °	0.28	3.54	0.44	0.45	0

5.4. <u>Site Preparation</u>

The site preparation for the proposed residential development is anticipated to include the removal of topsoil and vegetation, the subexcavation of any unsuitable fill and any native soils deemed not capable of supporting the design bearing capacity, removal or relocation of any existing services, followed by the placement of structural fill (as required) and site grading to achieve proposed grades.

5.4.1. <u>Topsoil Stripping/Vegetation Removal</u>

All topsoil must be removed from within the proposed building and roadway envelopes to expose approved competent subgrade soils. The topsoil may be used in landscaped areas where some settlement can be tolerated; otherwise it should be properly disposed of off-site.

All vegetation and trees (including tree root structures as well as any loose soils that are typically associated with root structures) must be removed from within the proposed building and roadway envelopes to expose approved competent subgrade soils.

The volume of topsoil removed during the stripping process can be influenced by the equipment utilized for the stripping process as well as the moisture conditions at the time of stripping.

5.4.2. <u>Removal/Relocation of Existing Buried Piping</u>

It should be noted that a hickenbottom was noted in the area of Boreholes 5 and 6. Any existing underground services (if present) that may be located within the proposed building envelopes must be removed/relocated. If left in place, the location of existing services must be reviewed to ensure that they do not conflict with proposed foundation locations. This includes any existing field tiles or subdrains that may be present. Any piping that is left in place that is no longer active must be completely sealed with watertight mechanical covers, concrete or grout at termination points to prevent the migration of soils into pipe voids, which may result in potential settlement. All existing trench backfill material associated with any underground services must be subexcavated and the subsequent excavation must be backfilled with approved soils placed in accordance with Section 5.4.4 of this report.

5.4.3. Fill Removal

Any existing fill (including any existing trench backfill), as well as any native soils that have inadequate bearing capacity or has been disturbed by demolition/construction processes and are considered to be unsuitable to support foundations or slab-on-grades, must be subexcavated from within the proposed building envelopes, exterior entranceways, perimeter sidewalks and perimeter concrete slab areas to expose approved competent subgrade soils. It would also be sound construction practice to subexcavate all existing unsuitable fill from the paved driveway areas; however, this may not be cost-effective. At a minimum, thorough inspection will be required at the time of construction to assess the existing fill to ensure there is no buried topsoil or other deleterious materials within the subgrade soils. Remedial action may also be required to further consolidate any existing fill or loose/soft native soils if it is decided to leave them in place. If any existing fill is left in place, provisions for the alterations to the design of the pavement structure should be included in the tender documents. Review of the subgrade and potential changes to the design of the pavement structure, as required, will be addressed at the time of construction.

Prior to reusing excavated material on-site as potential bulk fill, thorough field inspection and approval by qualified geotechnical personnel would be required to ensure that existing fill materials are not comprised of organics, topsoil or other deleterious materials.

5.4.4. <u>Site Grading</u>

Following removal of the topsoil and vegetation, as well as the subexcavation of any fill or native soils deemed unsuitable of supporting the design bearing capacity, the exposed subgrade soils must be proof-rolled, and any soft or unstable areas must be subexcavated and replaced with approved fill materials.

Any fill materials required to achieve the design grades should be placed according to the following procedures:

- Prior to placement of any structural fill or bulk fill, the subgrade for the proposed buildings and roadway must be prepared large enough to accommodate a 1:1 slope commencing a distance of 1.0 m beyond the outside edge of the proposed foundation and pavement edge (where feasible) to the approved competent founding soils;
- Soils approved for use as structural fill must be placed in loose lifts not exceeding 0.3 m (12") in depth for granular soils (recommended fill material) and 0.2 m (8") in depth for silts and clays (not recommended for this application), or the capacity of the compactor (whichever is less);
- Granular fill materials (OPSS 1010 Type III Granular 'B' recommended for this application) can be compacted utilizing adequate heavy vibratory smooth drum or padfoot compaction equipment;
- Fine-grained silt and clay soils (not recommended) must be compacted utilizing adequate heavy padfoot vibratory compaction equipment;

- Approved fill materials must be at suitable moisture contents to achieve the specified compaction. Soil moisture will also be dependent on weather conditions at the time of construction. Granular soils may require the addition of water in order to achieve the specified compaction;
- Approved structural fill materials that will support structures (including foundations, interior slab-on-grades, sidewalks and large expansive exterior slabs) must be compacted to 100% standard Proctor maximum dry density (SPMDD);
- Approved bulk fill (foundation wall backfill, bulk fill under slab-on-grades that will not support footings or heavy point loading) must be compacted to a minimum 98% SPMDD. It would be expected that the native soils would be suitable for use as bulk fill; however, depending on the time of year and weather conditions when construction takes place, soils excavated at depth may require air-drying in order to achieve the specified density; and
- Granular 'B' subbase and Granular 'A' base materials for the paved parking areas must be compacted to 100% SPMDD.

Any wet to saturated soils encountered during the excavation will require significant air-drying along with working of the soils in order to achieve the specified compaction. Utilizing the existing soils during site grading may be more achievable if work is completed during the generally drier summer months. It should be noted, however, that due to the nature of some of the soils, during hot dry weather, the addition of water might be required in order to achieve the specified compaction. Reuse of excavated soils on-site will be subject to approval from qualified geotechnical personnel.

5.5. <u>Foundation Subgrade Preparation</u>

The native soils encountered in the boreholes are sensitive to change in moisture content and can become loose/soft if the soils are subjected to additional water or precipitation, as well as severe drying conditions. The native subgrade soils could also be easily disturbed if traveled on during construction. Once they become disturbed, they are no longer considered adequate for the support of shallow foundations.

To ensure and protect the integrity of the founding soils during construction operations, the following is recommended:

• Should the native soils at the design founding elevation in the proposed building envelopes comprise wet or saturated soils, then a granular drainage layer, constructed in accordance with Section 9.14.4 of the current Ontario Building

Code (OBC) may be required. Alternatively, a lean mix concrete mud mat may be poured overlying the subgrade soils to provide a stable base;

- During construction, the subgrade should be sloped/ditched to a sump (as required) located outside the building footprint (if feasible) in the excavation to promote surface drainage of rainwater or seepage and the collected water should be pumped out of the excavation. It is critical that all water be controlled (not allowed to pond) and that the subgrade and foundation preparation commence in dry conditions;
- Construction equipment travel and foot traffic on the founding soils should be minimized;
- If construction is to be undertaken during subzero weather conditions, the founding native soils and any potential fill materials must be maintained above freezing;
- Prior to placing concrete for the footings, the footing area must be cleaned of all disturbed or caved materials;
- The foundation formwork and concrete should be installed as soon as practical following the excavation, inspection and approval of the founding soils. The longer that the excavated soils remain open to weather conditions and groundwater seepage, the greater the potential for construction problems to occur;
- If it is expected that the founding soils will be left open to exposure for an extended period of time, it is recommended that a 75 mm concrete mud slab be poured in order to protect the structural integrity of the founding soils.

All foundation excavations must be reviewed by qualified personnel to confirm the suitability of the founding fill soils prior to foundation placement.

5.6. <u>Slab-on-Grade/Modulus of Subgrade Reaction</u>

Prior to the placement of the granular base for any slab-on-grades, the subgrade soils must be proof-rolled. Any soft or weak zones, as well as the unsuitable fill in the subgrade, should be subexcavated and backfilled with approved fill materials (see Sections 5.4.4 and 5.10 of this report).
Soil Type	Estimated Modulus of Subgrade Reaction (k)
Imported Sand and Gravel (OPSS 1010)	81,000 kN/m ³ (300 lb/in ³)
Sandy Silt	33,955 kN/m ³ (125 lb/in ³)
Sand and Gravel	68,000 kN/m ³ (250 lb/in ³)

The following table provides the estimated modulus of subgrade reaction (k) for imported granular fill, as well as the native soils encountered on-site:

In dry conditions, floor slabs can be founded on a minimum thickness of 150 mm (6") of Granular 'A' (OPSS 1010) and compacted to 100% SPMDD. It should be noted that wet to saturated soil conditions were encountered in the boreholes. As such, if wet to saturated soils are encountered during the excavation, it would be recommended that 150 mm (6") of 19 mm clear crushed stone (OPSS 1004) should be used as a base for the floor slabs instead of Granular 'A'. Utilizing clear crushed stone for the slab-on-grade base can assist in providing a moisture barrier by reducing the potential for capillary rise of moisture from the subgrade soils. Compactive effort is required to consolidate the clear stone. The 19 mm clear crushed stone should meet the physical property and gradation requirements of OPSS 1004.

It is recommended that areas of extensive exterior slab-on-grade (sidewalks and accessibility ramps) be constructed with a Granular 'B' subbase (450 mm) and a Granular 'A' base (150 mm), as well as incorporating subdrains, to promote rapid drainage and reduce the effects of frost heaving. This is particularly critical at barrier-free access points. Alternatively, structural frost slabs could be designed and constructed, or sufficient thermal insulation could be provided, at all door entrances and areas of barrier-free access.

5.7. <u>Excavations</u>

All excavations must be carried out in accordance with Ontario Regulation 213/91 (Reg 213/91) of the Occupational Health and Safety Act and Regulations for Construction Projects.

Type 2 Soils - In general, the native sandy silt soils encountered in the boreholes in a drained state (not saturated), would be classified as Type 2 soils under Reg 213/91. The Type 2 soils must be sloped from within 1.2 m of the bottom of the excavation having a minimum gradient of 1 horizontal to 1 vertical. Soils underlain by Type 3 or 4 soils that are exposed in the excavation must be treated accordingly as Type 3 or 4 soils (see below). All saturated soils encountered must be treated as Type 4 soils, as described below.

Type 3 Soils - In general, any existing fill materials (backfill of existing foundations and services) as well as the sand and gravel soils in a drained state (not saturated), would be classified as Type 3 soils under Reg 213/91. The Type 3 soils must be sloped from the bottom of the excavation at a minimum gradient of 1 horizontal to 1 vertical. Soils underlain by Type 4 soils that are exposed in the excavation must be treated accordingly as Type 4 soils (see below). All saturated soils encountered must be treated as Type 4 soils, as described below.

<u>**Type 4 Soils</u>** - In general, any wet to saturated soils would be classified as Type 4 soils under Reg 213/91. Type 4 soils must be sloped from the bottom of the excavation at a minimum gradient of 3 horizontal to 1 vertical.</u>

If it is not practical to excavate according to the above requirements, then a trench support system (designed in accordance with the Ontario Health and Safety Act Regulations) may be utilized. When using a temporary trench support system consisting of trench boxes to reduce the lateral extent of the excavations, it should be noted that the support system is intended primarily to protect workers as opposed to controlling lateral soil movement. Any voids between the excavation walls and the support system should be immediately filled to reduce the potential for loss of ground and to provide support to existing adjacent utilities and structures, and it is recommended that the excavation be carried out in short sections, with the support system installed immediately upon excavation completion.

5.8. <u>Construction Dewatering Considerations</u>

It should be noted that the groundwater was measured to be relatively shallow throughout the borehole locations. Groundwater conditions (particularly perched water) are generally dependent on the amount of precipitation, control of surface water, as well as the time of year, and can fluctuate significantly in elevation and volume. As such, provisions for site dewatering should be part of the site development and construction process.

Seepage control requirements during construction will depend upon the area of work on the site, the depth of the excavations, the time of year, the amount of precipitation and the control of surface water. As required, seepage should generally be adequately controlled using conventional construction dewatering techniques such as pumping from sump pits. However, if heavy seepage occurs (particularly in the saturated soil deposits), it may be necessary to increase the number of pumps during construction.

Dewatering should be performed in accordance with OPSS 517, and the control of water must be in accordance with OPSS 518. It is the responsibility of the contractor to propose a suitable dewatering system based on the groundwater elevation at the time of construction. Collected water should discharge a sufficient distance away from the excavation to prevent re-entry. Sediment control measures must be installed at the discharge point of the dewatering system to avoid any potential adverse impacts on the environment.

5.9. <u>Service Pipe Bedding</u>

The native soils encountered in the geotechnical investigation are generally considered suitable for indirect support of the site service pipes, however there is the potential for a high groundwater table to be encountered. Should instability due to saturated soil conditions be encountered, it may be necessary to increase the thickness of the granular base and utilize 19 mm clear stone to create an adequate supporting base for the service pipes and/or manholes. Additionally, it may be necessary to place granular bedding/backfill immediately upon placing the pipe to prevent the pipe from floating in wet conditions. Pipe embedment, cover and backfill for both flexible and rigid pipes should be in accordance with all current and applicable OPSD, OPSS and OBC standards and guidelines and as follows:

Flexible Pipes – The pipe bedding should be shaped to receive the bottom of the pipe. If necessary, pipe culvert frost treatment should be undertaken in accordance with OPSD-803.031. The trench excavations should be symmetrical with respect to the centre-line of the pipe. The granular material placed under the haunches of the pipe must be compacted to 100% SPMDD prior to the continued placement and compaction of the embedment material. The homogeneous granular material used for embedment should be placed and compacted uniformly around the pipe. Should wet conditions be encountered at the base of the trench, then the pipe bedding should consist of 19 mm clear stone (meeting OPS Specifications) wrapped completely in a geotextile fabric such as Terrafix 270 or equivalent.

<u>Rigid Pipes</u> - In general, the pipe installation recommendations for rigid pipes are the same as those for flexible pipes, except that the minimum bedding depth below a rigid pipe should be 0.15D (where D is the pipe diameter). In no case should this dimension be less than 150 mm or greater than 300 mm.

Any service pipes that are not provided with sufficient frost coverage must be protected with the necessary equivalent thermal insulation. The general contractor is responsible to protect existing and new service piping from damage by heavy equipment.

5.10. Perimeter Building Drainage, Foundation Wall Backfill and Trench Backfill

In order to assist in maintaining a dry building with respect to surface water seepage, it is recommended that exterior grades around the building be sloped down and away at a 2% gradient or more, for a distance of at least 1.5 m. Any surface discharge rainwater leaders must be constructed with solid piping that discharges with positive drainage at

least 1.5 m away from the building foundation and/or beyond sidewalks to a drainage swale or appropriate storm drainage system.

In order to reduce the effects of surficial frost heave in areas that will be hard surfaced, it is recommended that the exterior foundation backfill consist of free-draining granular material such as approved on-site sand or sand and gravel or imported Granular 'B' Type I or Type III (OPSS 1010), with a maximum aggregate size not exceeding 100 mm, and that it extend a minimum lateral distance of 600 mm out from the foundation walls and/or beyond perimeter sidewalks and entranceway slabs. It is critical that particles greater than 100 mm in diameter are not in contact with the foundation wall to prevent point loading and overstressing. The backfill material used against the foundation walls must be placed so that the allowable lateral capacities of the foundation walls are not exceeded. Where only one side of a foundation wall will be backfilled, and the height of the wall is such that lateral support is required, or where the concrete strength has not been achieved, the wall must be braced or laterally supported prior to backfilling. In situations where both sides of the wall are backfilled, the backfill should be placed in equal lifts, not exceeding 200 mm differential on each side during backfill operations and the backfill should be compacted to a minimum of 98% SPMDD.

Foundations constructed within or below the zone of wet to saturated soils noted in the boreholes may be subject to flooding in the event of a power failure or equipment malfunction. Therefore, it would be recommended that foundations be constructed above the wet to saturated zones. If this is not feasible, it is recommended that good quality sump pumps be utilized and that, at a minimum, the systems be equipped with a battery backup (in the event of a power outage) preferably with a separate functioning sump pump(s). Each residence should have its own sump pit and pump(s). Groundwater elevations (perched and regional water tables) are dependent on weather and seasonal conditions and should be expected to fluctuate. The construction of foundations, slabs-on-grade, and deep structures such as sump pits within or below zones of saturation will require design of site-specific waterproofing and dewatering systems constructed in accordance with the 2012 OBC.

If the proposed dwellings are to have basements, an exterior perimeter drainage system comprising perforated drainage pipe with a factory installed filter sock, bedded in 19 mm clear crushed stone and wrapped in a geotextile filter fabric such as Terrafix 270R (or equivalent), must be installed at an elevation that is below the proposed basement slab-on-grade elevation and provided with positive drainage into a sump pit or pits. The portion of the piping that connects the exterior drainage system into the sump pit must comprise solid piping to prevent exterior water from being introduced into the interior subslab stone. It may be prudent to install perforated drainage pipe in the interior basement as well to provide an outlet for any water that may collect in the subslab stone. It is also recommended that a capped cleanout port(s) be extended up to the ground surface elevation to provide future access (if required). The rainwater leaders must not be connected to the perimeter drainage system.

The native soils, as well as approved fill materials (non-organic) are generally considered suitable for reuse as trench backfill and bulk fill in the driveway areas; however, any wet soils encountered may require air-drying in order to achieve the specified compaction. Air-drying cannot typically be achieved during winter construction; therefore, depending on the time of year that construction takes place, it may be more feasible to utilize an imported granular fill for this project.

Backfilling operations should be carried out with the following minimum requirements:

- Adequate heavy smooth drum or padfoot vibratory compaction equipment should be used for the compaction and to break down any large blocky pieces of soil;
- Loose lift thicknesses should not exceed 0.3 m (12") for granular soils or 0.2 m (8") for silt soils or the capacity of the compactor (whichever is less);
- The soils must be at suitable moisture contents to achieve compaction to a minimum 98% SPMDD in non-structural bulk fill areas. Service trenches excavated within the zone of influence of footings for structures must be compacted to a minimum of 100% SPMDD;
- It is recommended that inspection and testing be carried out during construction to confirm backfill quality, thickness and to ensure that compaction requirements are achieved;
- Service trench backfill materials may consist of approved excavated soils with no particles greater than 100 mm and no topsoil or other deleterious materials;
- If construction operations are undertaken in the winter, strict consideration should be given to the condition of the backfill material to make certain that frozen material is not used.

5.11. <u>Pavement Design/Drainage</u>

The existing topsoil, vegetation, and any soils containing organics or other deleterious material must be stripped/subexcavated from within the roadway area. It is recommended to either subexcavate any existing loose subgrade materials or provide further consolidation with vibratory compaction equipment in order to prepare a proper, stable subgrade. Prior to placement of the new granular base, the subgrade soils must be proof-rolled, and any soft or unstable areas should be subexcavated and replaced with suitable drier materials. The subgrade should be graded smooth (free of depressions) and properly crowned to ensure positive drainage, with a minimum grade of 3% toward the drainage outlet or curb line. When service pipes are installed, pipe bedding and backfilling should be undertaken as indicated in Sections 5.9 and 5.10 of this report.

Rapid drainage of the pavement structure is critical to ensure long-term performance. The requirement for subdrains will be dependent on the composition of the prepared roadway and driveway subgrade soils. It is expected that the subgrade soils will generally be comprised of frost-susceptible soils. As such, it is recommended to install subdrains, provided gravity drainage to a suitable outlet can be provided. It is recommended to install minimum 100 mm diameter perforated subdrains to collect and redirect water beneath the pavement surface. Subdrains should be designed and installed in accordance with OPSS 405 and OPSD 216.021. If Granular 'A' bedding (OPSS 1010) is utilized, the subdrains should be equipped with a factory installed filter sock. If 19 mm clear stone (OPSS 1004) is utilized as bedding for the subdrain, then the bedding must be wrapped completely with geotextile filter fabric such as Terrafix 270R (or equivalent). Installation of rigid subdrains allows for better grade control and less potential for damage during installation; however, it would be expected that there would be higher cost implications associated with the installation of rigid subdrains over flexible subdrains. Positive drainage through grade control of subdrains is critical, as improperly installed subdrains can turn drainage systems into reservoirs, which can fuel frost action. The subdrains will hasten the removal of water, thereby reducing the risk and effects of frost heaving and load transfer in saturated conditions. It is suggested that, at a minimum, subdrains be installed along the edge of the roadway pavement to prevent water from entering the subbase. The subdrains should be installed in a 0.3 m (1.0 ft) by 0.3 m (1.0 ft) trench in the subgrade and bedded approximately 50 mm (2") above the bottom of the trench. The subgrade must be prepared with positive drainage to the subdrains and the subdrains must be installed with positive drainage into a catch basin structure or other suitable outlet.

The native subgrade soils are sensitive to change in moisture content and can become loose or soft if the soils are subject to inclement weather and seepage or severe drying. Furthermore, the subgrade soils could be easily disturbed if traveled on during construction. As such, where this material will be exposed, it is recommended that the granular subbase be placed immediately upon completion of the subgrade preparation to protect the integrity of the subgrade soils.

Should wet to saturated conditions be encountered during construction, site assessments may be required to determine what options can be undertaken to construct a modified pavement base. These options may include subexcavation of wet soils and increasing the thickness of the granular base, the use of reinforcing geotextiles, or a combination of both.

It is expected that the roadway will be subject to mostly light traffic (personal vehicles) as well as some heavy traffic (delivery trucks, maintenance and emergency vehicles).

Material	Recommended Thickness For New Pavement			
	Light Duty	Heavy Duty		
Asphaltic Concrete	HL3 - 40 mm (1.5") HL4 or HL8 - 50 mm (2.0")	HL3 - 40 mm (1.5") HL4 or HL8 - 60 mm (2.5")		
Granular 'A' Base (OPSS 1010)	150 mm (6.0")	150 mm (6.0")		
Granular 'B' Subbase (OPSS 1010)	400 mm (16.0")	450 mm (18.0")		

Based on the anticipated loading, the following pavement design is provided:

Frost tapers must be constructed at any changes from light traffic to heavy traffic areas. If heavy traffic routes are not delineated by barriers or if it is anticipated that heavy equipment (loader and dump trucks) will be utilized for snow removal, it would be recommended that the heavy traffic pavement structure be utilized throughout.

Construction joints in the surface asphalt must be offset a minimum of 150 mm to 300 mm (6" to 12") from construction joints in the binder asphalt so that longitudinal joints do not coincide.

Where new asphalt is joined into existing asphalt, it is recommended that the existing asphalt be sawcut in a straight line prior to being milled to a depth of 40 mm and a width of 150 mm as per OPSD 509.010. It is recommended that a tackcoat in conformance with OPSS 308 be applied to the edge and surface of all milled asphalt prior to placement of new asphalt.

The granular base and subbase materials must conform to the physical property and gradation requirements of OPSS 1010 and must be compacted to 100% SPMDD. Asphaltic concrete should be supplied, placed and compacted to a minimum 92.0% Marshall maximum relative density, in accordance with OPSS 1150 and OPSS 310.

The pavement should be designed to ensure that water will not pond on the pavement surface. If the surface asphalt is not placed within a reasonable time following placement of the binder asphalt, it is recommended that the catch basin lids are set at a lower elevation or apertures provided to allow surface water to drain into the catch basins and not accumulate around the catch basins. The strength of the pavement structure relies on all of the components to be in place in order to provide the design strength; therefore, it is strongly recommended that the surface asphalt be placed shortly after placement of the binder asphalt so as to avoid undue stress on the binder asphalt by not having the complete pavement structure in place.

It should be noted that, currently, asphalt mixes tend to be more flexible and, as such, there is a tendency for damage to occur from vehicles turning their steering wheels or applying excessive brake pressure. The damage can occur from both passenger vehicles as well as large vehicles. The condition is further intensified during hot weather. In high traffic areas, it is recommended that rigid Portland cement pavement be considered.

5.12. Infiltration

The following information is based on the grain size analyses that were undertaken on soil samples obtained from Borehole 1 (depth 2.29 m to 2.90 m or 7.50 ft to 9.50 ft), Borehole 3 (depth 3.05 m to 3.66 m or 10.00 ft to 12.00 ft) and Borehole 6 (depth 3.05 m to 3.66 m or 10.00 ft to 12.00 ft).

The sample from Borehole 1 comprised sandy silt with some clay and trace gravel (ML) and the estimated coefficient of permeability (k) of this sample is 1.22×10^{-6} cm/sec.

The sample from Borehole 3 comprised sandy silt with some clay and trace gravel (ML) and the estimated coefficient of permeability (k) of this sample is 2.44×10^{-6} cm/sec.

The sample from Borehole 6 comprised sand and silt with some clay and trace gravel (SM) and the estimated coefficient of permeability (k) of this sample is 4.08×10^{-6} cm/sec.

A detailed stratigraphic description of the soils encountered for each borehole is provided in the borehole logs (Appendix A). The grain size analyses can be found in Appendix B of this report.

5.13. <u>Percolation Rate (T-time) Determination</u>

It is understood that new septic systems are to be designed at a later date. The following is a summary of the percolation rate (T-time) determinations by CMT Inc.

The sample from Borehole 2 (depth 0.76 m to 1.37 m or 2.50 ft to 4.50 ft) was determined to be sand and silt with trace clay and can be classified as SM using the Unified Soil Classification System. The corresponding estimated soil percolation rate, as referenced to Section 6 of the Supplementary Guidelines to the Ontario Building Code 2012 (amended in 2019), would be T = 20 min/cm.

The sample from Borehole 4 (depth 1.52 m to 2.13 m or 5.00 ft to 7.00 ft) was determined to be sandy silt with some clay and gravel and can be classified as ML using the Unified Soil Classification System. The corresponding soil percolation rate, as referenced to Section 6 of the Supplementary Guidelines to the Ontario Building Code 2012 (amended in 2019), would be T = 25 min/cm.

The sample from Borehole 5 (depth 1.52 m to 2.13 m or 5.00 ft to 7.00 ft) was determined to be sandy silt with some clay and trace gravel and can be classified as ML using the Unified Soil Classification System. The corresponding soil percolation rate, as referenced to Section 6 of the Supplementary Guidelines to the Ontario Building Code 2012 (amended in 2019), would be T = 30 min/cm.

It should be noted that these test results are based on single samples obtained during the investigation and do not constitute as guarantees for the entire site. Additional test samples should be obtained and tested if there is a variation observed at any time.

A detailed stratigraphic description of the soils encountered for each borehole is provided in the borehole logs (Appendix A). The grain size analyses can be found in Appendix B of this report.

5.14. <u>Excess Soil Management</u>

5.14.1. Chemical Testing was NOT Undertaken

Generally, if surplus soils are to be exported off-site, it will be necessary to undertake chemical analysis of the soils. Chemical analysis was not undertaken as part of this geotechnical investigation. Should chemical analysis tests be required, the required tests vary and will be dependent on the disposal site utilized by the general contractor.

Most commonly, the soils are tested for the following:

- F1-F4, VOC's, BTEX as per O. Reg. 153/04 as amended by R511
- SVOC as per O. Reg. 153/04 as amended by R511
- Metals/Inorganics as per O. Reg. 153/04 amended by R511

5.14.2. <u>TCLP Requirement</u>

If soils are transported to a landfill facility, additional chemical testing in accordance with Ontario Regulation 347, Schedule 4, as amended to Ontario Regulation 558/00, dated March 2001, Toxicity Characteristic Leaching Procedure (TCLP) will be required.

When transporting soils off-site, the following is recommended:

- All chemical analyses and environmental assessment reports must be fully disclosed to the receiving site owners/authorities, whom must agree to receive the material;
- An environmental consultant must confirm the land use at the receiving site is compatible to receive the material;
- An environmental consultant must monitor the transportation and placement of the materials to ensure that the material is placed appropriately at the pre-approved site;
- The excess materials may not be transported to a site that has previously had a Record of Site Condition (RSC) filed, unless the material meets the criteria outlined in the RSC.

It should be noted that landfill sites will generally only accept laboratory test results that have been completed within 30 days of exporting. Therefore, it is recommended that provisions for chemical analysis be included in the tender documents. It should also be noted that the laboratory testing generally takes five (5) working days to process with a regular turnaround time.

5.15. <u>Radon</u>

According to information provided by Health Canada, radon is a radioactive gas that is naturally formed through the breakdown of uranium in soil, rock and water. When radon escapes the earth in the outdoors, it mixes with fresh air, resulting in concentrations that are too low to be of concern. However, when radon enters an enclosed space, such as a building, high concentration of radon can accumulate and become a health concern. Health Canada indicates that most buildings and homes have some level of radon in them. Unfortunately, it is not possible to predict before construction whether or not a new building will have high radon levels as radon can only be detected by radon measurement devices, which would be installed in a building, post construction. Section 9.13.4.1 Soil Gas Control of the current 2012 Ontario Building Code (OBC) states that "Where methane or radon gases are known to be a problem, construction shall comply with the requirements for soil gas control in MMAH Supplementary Standard SB-9, Requirements for Soil Gas Control".

6.0 <u>SITE INSPECTION</u>

Qualified geotechnical personnel should supervise excavation inspections as well as compaction testing for structural filling, site grading and site servicing. This will ensure that footings are founded in the proper strata and that proper material and techniques are used and the specified compaction is achieved. CMT Engineering Inc. would be pleased to review the design drawings and provide an inspection and testing program for the construction of the proposed development.

7.0 LIMITATIONS OF THE INVESTIGATION

The recommendations made in this report are in accordance with our present understanding of the project. We request that we be permitted to review our recommendations when the drawings and specifications are complete, or if the proposed construction should differ from that mentioned in this report.

It is important to emphasize that a soil investigation is, in fact, a random sampling of a site and the comments are based on the results obtained at the test locations only. It is therefore assumed that these results are representative of the subsoil conditions across the site. Should any conditions at the site be encountered which differ from those found at the test locations, we request that we be notified immediately in order to permit a reassessment of our recommendations.

It should be noted that this report specifically addresses geotechnical aspects of the project and does not include any investigations or assessments relating to potential subsurface contamination. As such, there should be no assumptions or conclusions derived from this report with respect to potential soil or water contamination. Soil or water contamination is generally caused by the presence of xenobiotic (human-made) chemicals or other alteration processes in the natural soil and groundwater environment. If necessary, the investigation, assessment and rehabilitation of soil and water contaminants should be undertaken by qualified environmental specialists.

The samples obtained during the geotechnical investigation will be stored for a period of three months, after which time they will be disposed of unless alternative arrangements are made.

This report is intended solely for the client named. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the reliability of such third parties. The factual data, interpretation, and recommendations in this report pertain to a specific project as described in this report and are not applicable to any other project or site location. If the project is modified in concept, location or elevation, deviates from the assumptions stated herein, CMT Inc. should be given an opportunity to confirm that the recommendations are still valid. The subject geotechnical exploration and this report address only the geotechnical aspects of the proposed project; potential environmental impacts or related issues are beyond the defined scope of this work and have not been addressed.

We trust that this report meets with your present requirements. Should you have any questions, please do not hesitate to contact our office.

Prepared by:

(

Jake Feeney B.Eng., EIT.

ks

APPENDIX A

BOREHOLE LOGS

APPENDIX B

GRAIN SIZE ANALYSES

SOIL DATA					
SYMBOL SOURCE SAMPLE NO. DEPTH (ft.) Material Description US					
0	BH1	4	2.29-2.90m	sandy silt, some clay, trace gravel	ML
				Estimated Coefficient of Permeability; $k = 1.22 \text{ x } 10^{-6} \text{ cm/sec}$	
				Sampled by JF of CMT Engineering Inc., May 13, 2021	
				Tested by JM of CMT Engineering Inc., May 28, 2021	

CMT Engineering Inc.	Client: Will-O Homes	
	Project: 5782 6th Line East	
	Ariss, Ontario	
St. Clements, ON	Project No.: 21-209	Figure 1

	SOIL DATA					
SYMBOL SOURCE SAMPLE NO. DEPTH (ft.) Material Description US						
0	BH2	2	0.76-1.37m	sand and silt, trace clay	SM	
				Estimated Percolation Rate; T = 20 min/cm		
				Sampled by JF of CMT Engineering Inc., May 13, 2021		
				Tested by JM of CMT Engineering Inc., May 28, 2021		

CMT Engineering Inc.	Client: Will-O Homes	
	Project: 5782 6th Line East	
	Ariss, Ontario	
St. Clements, ON	Project No.: 21-209	Figure 2

	SOIL DATA				
SYMBOL SOURCE SAMPLE NO. DEPTH (ft.) Material Description					
0	BH3	5	3.05-3.66m	sandy silt, some clay, trace gravel	ML
				Estimated Coefficient of Permeability; $k = 2.44 \text{ x } 10^{-6} \text{ cm/sec}$	
				Sampled by JF of CMT Engineering Inc., May 13, 2021	
				Tested by JM of CMT Engineering Inc., May 28, 2021	

CMT Engineering Inc.	Client: Will-O Homes	
	Project: 5782 6th Line East	
	Ariss, Ontario	
St. Clements, ON	Project No.: 21-209	Figure 3

	SOIL DATA					
SYMBOL SOURCE SAMPLE NO. DEPTH (ft.) Material Description U						
0	BH4	3	1.52-2.13m	sandy silt, some clay, and gravel	ML	
				Estimated Percolation Rate; T = 25min/cm		
				Sampled by JF of CMT Engineering Inc., May 13, 2021		
				Tested by JM of CMT Engineering Inc., May 28, 2021		

CMT Engineering Inc.	Client: Will-O Homes	
	Project: 5782 6th Line East	
	Ariss, Ontario	
St. Clements, ON	Project No.: 21-209	Figure 4

SOIL DATA					
SYMBOL SOURCE SAMPLE NO. DEPTH (ft.) Material Description US					
0	BH5	3	1.52-2.13m	sandy silt, some clay, trace gravel	ML
				Estimated Percolation Rate; T = 30 min/cm	
				Sampled by JF of CMT Engineering Inc., May 13, 2021	
				Tested by JM of CMT Engineering Inc., May 28, 2021	

CMT Engineering Inc.	Client: Will-O Homes	
	Project: 5782 6th Line East	
	Ariss, Ontario	
St. Clements, ON	Project No.: 21-209	Figure 5

	SOIL DATA									
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	Material Description	USCS					
0	BH6	5	3.05-3.66m	sand and silt, some clay, trace gravel	SM					
				Estimated Coefficient of Permeability; $k = 4.08 \text{ x } 10^{-6} \text{ cm/sec}$						
				Sampled by JF of CMT Engineering Inc., May 13, 2021						
				Tested by JM of CMT Engineering Inc., May 28, 2021						

CMT Engineering Inc.	Client: Will-O Homes	
	Project: 5782 6th Line East	
	Ariss, Ontario	
St. Clements, ON	Project No.: 21-209	Figure 6

APPENDIX C

WELL LOG RECORDS

APPENDIX B

Fire Reservoir Sizing Calculations

Project No:	420	099-1	FIRE UNDERWRITERS SURVEY CALCULATIONS									Date:		6/22/2023					
Designed By:		NK JF		5782 6 TH LINE EAST															
Спескей Бу.	, ,						TOWN	SHIP OF G	UELPH/ER	AMOSA									
Parameters from	Water Supply	for Public Fire P	rotection, Fire U	nderwriters Surv	/ey (1999)											Proximity	to closest s	structure (m)	
					,											0 to 3		25%	
Type of Construc	tion				Fire Hazar	d				Sprinklers						3 to 10		20%	
Wood		1.5			Non-Comb	ustible	-0.25			No			0			10 to 20		15%	
Ordinary		1.0			Limited Co	mbustibility	-0.15			System			-30%			20 to 30		10%	
Non-Combustible	2	0.8			Combustib	le	0			Standard \	Nater Si	upply	-40%			30 to 40		5%	
Fire-Resistive		0.6			Free Burni Banid Burn	ng	0.15			Fully Supe	rvised		-50%			None Fire Wall		0% 1.0%	
					карій вигі	iirig	0.25									The Wall		10%	
												Exp	osure C	oefficient					
Unit No.	Main Floor Area (m2)	Second Floor Area (m2)	Gross Floor Area (m2)	Construction Coefficient	NFF 220*C*(A) **0.5	Rounded NFF (to nearest 1000L/min)	Occupancy Factor	NFF adjusted for occupancy	Sprinkler Adjustment	Sprinkler Credit	N	s	E	w	Total (max 0.75)	Exposure Flow Debit	RFF (liter/min)	Rounded RFF (to nearest 1000L/min)	Required Fire Flow (L/s)
Building Area	270	270	540	0.8	4090	4000	0	4000	-0.4	-1600	0	0	0	0.025	0.025	100	2500	3000	50
	Minimum Requ	ired Water Supp	oly =	90,000.00	litres														
					+														
			1		_	1	1	1		1	1	1	1	1		1	1		1

Project No:	420	099-1		ONTARIO	D BUILDING (CODE FIRE D	EMANDCALC	ULATIONS					
Designed By:		JL		5	782 6 TH LINE E				Date:	6/22/20)23		
Checked By:	/	λK	TOWNSHIP OF GUELPH/ERAMOSA										
Spatial Coefficient (s) Building Height = 1 m to 5 m 0.50 6 m 0.40 Minimum required water supply = 8 m 0.20 >10 m 0.00 Stot = 1.0 + (S1 + S2+ S3 + S4) Height =				6 30	m minute			Required Minimum One-storey buildig if $Q \le 10800 L$ if $Q > 10800 L$ and if $Q > 13500 L$ and if $Q > 16200 L$ and if $Q > 19000 L$ and if $Q > 270000 L$	n Water Supply Flo In with building area I ≤ 135000 L I ≤ 162000 L I ≤ 190000 L I ≤ 2700000 L	w Rate, L/min a not exceeding 600 n	n ²	1800 2700 3600 4500 5400 6300 9000	
							Exposure Coefficie	ent					
Unit No.	Average Floor Area (m2)	Total building volume(V) (m3)	water supply Coefficient (K)	Q (K) x (V)	Ν	S	E	w	Total (max 2.0)	Q (litres)	RFF (liter/min)	Rounded RFF (to nearest 1000L/min)	Required Fire Flow (L/s)
Building Area	270	1,620	23	37260	0	0	0	0.2	1.2	44712	2700	3000	50
	Minimum Required	Water Supply =	90,000.00	litres	_								
									+				
				1									
	-				-				+				
						+					+		
				1									

APPENDIX C

Pre-Development Conditions Stormwater Management Analysis

Pre-Development SCS Numbers (weighted calculations) Pre-Development Condition Modelling results

CATCHMENT	Area (ha.)	SOILGROUP	Landuse	SCS CURVE NO.	
	1.102	BC	Wooded/wetlands	66.50	
20	6.615	BC	Crop land	74.50	
	0.084	AB	Wooded/wetlands	48.00	
Total	7.800			74.00	

CATCHMENT	Area (ha.)	SOILGROUP	Landuse	SCS CURVE NO.	
	0.415	BC	Wooded/wetlands	66.50	
10	0.053	BC	Pasture	74.00	
	0.521	AB	Pasture	59.00	
Total	0.988			63.00	

SCS CURVE PARAMETERS	Α	AB	В	С	BC
Cultivated land with no conservation treatment	62.00	66.50	71.00	78.00	74.50
Pasture & other umimproved land	49.00	59.00	69.00	79.00	74.00
Wooded and wetlands (fair)	36.00	48.00	60.00	73.00	66.50

Pre-Development Conditions (5-year)

Pre-Development Conditions (100-year)

_____ SSSSS U U (v 6.2.2007) V V Ι Α L V V Т SS U U ΑΑ _____ V V Ι SS U U AAAAA L V V Ι SS A L U UΑ VV Ι SSSSS UUUUU Α A LLLLL ΤΤΤΤΤ ΤΤΤΤΤ Η 000 H Y Y M М 000 ТΜ 0 0 Т Н Н ΥY MM MM 0 Т 0 т 0 0 Т Н Н Υ М М 0 0 000 Т Т Υ М Μ 000 Н Н Developed and Distributed by Smart City Water Inc Copyright 2007 - 2021 Smart City Water Inc All rights reserved. ***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Output filename: C:\Users\jangsoo.lee\AppData\Local\Civica\VH5\72fe312b-9676-436f-b6d3-c40a805b884b\f 095d4af-8577-438c-9f70-6620268bae19\ Summary filename: C:\Users\jangsoo.lee\AppData\Local\Civica\VH5\72fe312b-9676-436f-b6d3-c40a805b884b\f 095d4af-8577-438c-9f70-6620268bae19\ DATE: 06/22/2023 TIME: 08:59:35 USER: COMMENTS: _____ ------** ** SIMULATION : 5yr-3hr 10min Chicago CHICAGO STORM IDF curve parameters: A=1593.000 | Ptotal= 47.25 mm | B= 11.000 C= 0.879
used in: INTENSITY = $A / (t + B)^{C}$ Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = 0.38 RAIN | TIME RAIN | ' TIME RAIN | TIME RAIN TIME hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 0.003.210.8332.441.678.622.503.390.173.971.00109.681.836.652.673.020.335.201.1739.672.005.382.832.72 7.43 | 1.33 19.15 | 2.17 4.51 | 0.50 0.67 12.54 | 1.50 12.05 | 2.33 3.88 | _____ CALIB NASHYD (0001) Area (ha)= 0.99 Curve Number (CN)= 63.0 ID= 1 DT=10.0 min | Ia (mm)= 5.00 # of Linear Res.(N)= 3.00 ----- U.H. Tp(hrs)= 0.17 Unit Hyd Opeak (cms) = 0.222 PEAK FLOW (cms)= 0.032 (i) TOTAL RAINFALL (mm) = 47.252RUNOFF COEFFICIENT = 0.188 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALIB | NASHYD (0002) | Area (ha) = 7.80 Curve Number (CN) = 74.0 |ID= 1 DT=10.0 min | Ia (mm)= 5.00 # of Linear Res.(N)= 3.00 ----- U.H. Tp(hrs)= 0.17 Unit Hyd Qpeak (cms)= 1.752 PEAK FLOW (cms)= 0.378 (i) TIME TO PEAK (hrs)= 1.333 RUNOFF VOLUME (mm) = 12.951 TOTAL RAINFALL (mm) = 47.252 RUNOFF COEFFICIENT = 0.274 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0004) 1 + 2 = 3 ID1= 1 (0001): + ID2= 2 (0002):	AREA (ha) 0.99 7.80	QPEAK (cms) 0.032 0.378	TPEAK (hrs) 1.33 1.33	R.V. (mm) 8.90 12.95
ID = 3 (0004):	8.79	0.410	1.33	12.50
NOTE: PEAK FLOWS DO N	OT INCLU	JDE BASEFI	LOWS IF AN	NY.

_____ SSSSS U U (v 6.2.2007) V V Ι Α L V V Т SS U U ΑΑ _____ V V Ι SS U U AAAAA L Ι SS A L V V U UΑ VV Ι SSSSS UUUUU Α A LLLLL ΤΤΤΤΤ ΤΤΤΤΤ Η 000 H Y Y M М 000 ТΜ 0 0 Т Н Н ΥY MM MM 0 Т 0 т 0 0 Т Н Н Υ М М 0 0 000 Т Т Υ М Μ 000 Н Н Developed and Distributed by Smart City Water Inc Copyright 2007 - 2021 Smart City Water Inc All rights reserved. ***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Output filename: C:\Users\jangsoo.lee\AppData\Local\Civica\VH5\72fe312b-9676-436f-b6d3-c40a805b884b\0 b3bf063-db8d-41a5-ac5d-e4f9fdfe1cec Summary filename: C:\Users\jangsoo.lee\AppData\Local\Civica\VH5\72fe312b-9676-436f-b6d3-c40a805b884b\0 b3bf063-db8d-41a5-ac5d-e4f9fdfe1cec DATE: 06/22/2023 TIME: 08:59:35 USER: COMMENTS: _____ ------** ** SIMULATION : 100yr-3hr 10min Chicago CHICAGO STORM IDF curve parameters: A=4688.000 | Ptotal= 87.06 mm | B= 17.000 C= 0.962

used in: INTENSITY = $A / (t + B)^{C}$ Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = 0.38 RAIN | TIME RAIN | ' TIME RAIN | TIME RAIN TIME hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 0.00 4.42 0.83 66.23 1.67 15.63 2.50 4.76 0.17 5.87 | 1.00 196.54 | 1.83 11.36 | 2.67 4.07 0.33 8.33 | 1.17 81.01 | 2.00 8.71 | 2.83 3.53 0.50 13.04 | 1.33 38.79 | 2.17 6.93 0.67 24.27 | 1.50 23.19 | 2.33 5.68 | _____ CALIB NASHYD(0001)Area(ha)=0.99Curve Number(CN)=63.0ID=1DT=10.0minIa(mm)=5.00# of Linear Res.(N)=3.00 ----- U.H. Tp(hrs)= 0.17 Unit Hyd Opeak (cms) = 0.222 PEAK FLOW (cms)= 0.108 (i) TOTAL RAINFALL (mm) = 87.057RUNOFF COEFFICIENT = 0.319 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ CALIB | NASHYD (0002) | Area (ha) = 7.80 Curve Number (CN) = 74.0 |ID= 1 DT=10.0 min | Ia (mm)= 5.00 # of Linear Res.(N)= 3.00 ----- U.H. Tp(hrs)= 0.17 Unit Hyd Qpeak (cms)= 1.752 PEAK FLOW (cms)= 1.166 (i) TIME TO PEAK (hrs)= 1.333 RUNOFF VOLUME (mm) = 37.497TOTAL RAINFALL (mm) = 87.057 RUNOFF COEFFICIENT = 0.431 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0004) 1 + 2 = 3 ID1= 1 (0001): + ID2= 2 (0002):	AREA (ha) 0.99 7.80	QPEAK (cms) 0.108 1.166	TPEAK (hrs) 1.33 1.33	R.V. (mm) 27.78 37.50
ID = 3 (0004):	8.79	1.274	1.33	36.40
NOTE: PEAK FLOWS DO	NOT INCLU	JDE BASEFI	LOWS IF AN	NY.

Post-Development Conditions (5-year uncontrolled)

Post-Development Conditions (100-year uncontrolled)

Post-Development Conditions (24mm 4hour uncontrolled)

_____ SSSSS U U (v 6.2.2015) V V Ι А L V V Т SS U ΑΑ U _____ V V Ι SS U U AAAAA L V V Ι SS A L U UΑ VV Ι SSSSS UUUUU Α A LLLLL ΤΤΤΤΤ ΤΤΤΤΤ Η 000 H Y Y M М 000 ТΜ 0 0 Т Н Н ΥY MM MM 0 Т 0 т 0 0 Т Н Н Υ М M O 0 000 Т Т Υ М Μ 000 Н Н Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved. ***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Output filename: C:\Users\jangsoo.lee\AppData\Local\Civica\VH5\72fe312b-9676-436f-b6d3-c40a805b884b\d 838b6f0-7ffb-4b26-9666-9e4c4ab8916f Summary filename: C:\Users\jangsoo.lee\AppData\Local\Civica\VH5\72fe312b-9676-436f-b6d3-c40a805b884b\d 838b6f0-7ffb-4b26-9666-9e4c4ab8916f DATE: 01/26/2024 TIME: 01:24:02 USER: COMMENTS: _____ ------** ** SIMULATION : 5yr-3hr 10min Chicago CHICAGO STORM IDF curve parameters: A=1593.000 | Ptotal= 47.25 mm | B= 11.000 C= 0.879

	used in	: INTENSI	TY = A / (t -	+ B)^C	
	Duration Storm t Time to	n of storm ime step peak ratio	= 3.00 hrs = 10.00 min = 0.38		
TIME hrs 0.00 0.17 0.33 0.50 0.67	RAIN mm/hr 3.21 3.97 5.20 7.43 12.54	TIME R. hrs mm 0.83 32 1.00 109 1.17 39 1.33 19 1.50 12	AIN ' TIME /hr ' hrs .44 1.67 .68 1.83 .67 2.00 .15 2.17 .05 2.33	RAIN TIME mm/hr hrs 8.62 2.50 6.65 2.67 5.38 2.83 4.51 3.88	RAIN mm/hr 3.39 3.02 2.72
CALIB STANDHYD (0013) ID= 1 DT= 5.0 min	Area Total Im	(ha)= 0.4 p(%)= 28.0	9 0 Dir. Conn	.(%)= 20.00	
Surface Area Dep. Storage Average Slope Length Mannings n NOTE: RAINFA	I(ha)= (mm)= (%)= (m)= = SLL WAS TRA	MPERVIOUS 0.14 1.00 1.00 57.15 0.013 ANSFORMED T	PERVIOUS (i 0.35 1.50 2.00 40.00 0.250 0 5.0 MIN.) TIME STEP.	
TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 Max.Eff.Inten.(mm	RAIN mm/hr 3.21 3.21 3.97 3.97 5.20 5.20 7.43 7.43 12.54	TRANSF TIME R. hrs mm 0.833 12 0.917 32 1.000 32 1.083 109 1.167 109 1.250 39 1.333 39 1.417 19 1.500 19	ORMED HYETOGR/ AIN ' TIME /hr ' hrs .54 1.583 .44 1.667 .44 1.750 .68 1.833 .68 1.917 .67 2.000 .67 2.083 .15 2.167 .15 2.250 52.90	APH RAIN TIME mm/hr hrs 12.05 2.33 12.05 2.42 8.62 2.50 8.62 2.58 6.65 2.67 6.65 2.75 5.38 2.83 5.38 2.92 4.51 3.00	RAIN mm/hr 4.51 3.88 3.88 3.39 3.39 3.02 3.02 2.72 2.72 2.72
over (Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (min) min)= min)= cms)=	5.00 1.76 (ii 5.00 0.32	15.00) 10.86 (ii 15.00 0.09) *TOTALS*	

PEAK FLOW		(cms)=	0.03		0.03	0.	047 (iii))
ΤΙΜΕ ΤΟ Ρ	EAK	(hrs)=	1.17		1.33	1	17	
RUNOFF VO	LUME	(mm)=	46.25		20.94	25	.99	
TOTAL RAI	NFALL	(mm)=	47.25		47.25	47	.25	
RUNOFF CO	EFFICI	ENT =	0.98		0.44	e	.55	
***** WARNING: ***** WARNING:	STORAG	GE COEFF. EAS WITH I	IS SMALL	ER THAN S RATIOS	TIME STEP 5 BELOW 20	9 !)%		
	YOU SHO	OULD CONST	IDER SPLI	TTING TH	HE AREA.			
(i) CN	PROCED	JRE SELECT	FED FOR P	ERVIOUS	LOSSES:			
	* = č		а = рер. :	Storage	(Above)			
11 (11) 11M	E SIEP N THE ((DI) SHUL	JLD BE SMA	ALLEK UN T	K EQUAL			
(iii) DEA								
(III) PEA	K FLOW	DUES NUT	INCLUDE	DAJEFLUI				
		A 1000	(ha)-	1 1 5				
STANDHYD (0002) 	Area	(na)=	1.15		(0/)	F 00	
ID= I DI= 5.0	min	TOTAL	Lmp(%)=	5.00	Dir. Conr	1.(%)=	5.00	
			IMPERVIO	US PE	ERVIOUS (i	.)		
Surface A	rea	(ha)=	0.06		1.09	/		
Dep. Stor	age	(mm) =	1.00		1.50			
Average S	lope	(%)=	1.00		2.00			
Length		(m) =	87.56		40.00			
Mannings	n	=	0.013		0.250			
-								
NOTE:	RAIN	ALL WAS	TRANSFORM	ED TO	5.0 MIN.	TIME STE	P.	
			TR/	ANSFORM	ED HYETOGR	APH		
	TIM	E RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
	hrs	s mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
	0.083	3.21	0.833	12.54	1.583	12.05	2.33	4.51
	0.16	7 3.21	0.917	32.44	1.667	12.05	2.42	3.88
	0.250	3.97	1.000	32.44	1.750	8.62	2.50	3.88
	0.333	3.97	1.083	109.68	1.833	8.62	2.58	3.39
	0.41	7 5.20	1.167	109.68	1.917	6.65	2.67	3.39
	0.500	5.20	1.250	39.67	2.000	6.65	2.75	3.02
	0.583	3 7.43	1.333	39.67	2.083	5.38	2.83	3.02
	0.667	7.43	1.417	19.15	2.167	5.38	2.92	2.72
	0.750	12.54	1.500	19.15	2.250	4.51	3.00	2.72
May Eff T	nton (r	mm/hn)-	100 60		27 72			
MOX.LII.I	0.000	(min)	5 00 5 00		15 00			
Stonage (ooff	(min)-	5.00 7 77	(;;)	14 06 (ii)		
Unit Hud	Tnosk	(min)-	5 00	(11)	15 00 (11	•)		
Unit Hvd	nost	(cms) =	0 20 0 20		0 02			
UNIT HYU.	реак		0.50		0.00			

				TOTALS
PEAK FLOW	(cms)=	0.02	0.06	0.062 (iii)
TIME TO PEAK	(hrs)=	1.17	1.33	1.33
RUNOFF VOLUME	(mm)=	46.25	15.24	16.79
TOTAL RAINFALL	(mm)=	47.25	47.25	47.25
RUNOFF COEFFICI	ENT =	0.98	0.32	0.36

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 73.5 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

-----| CALIB |
| STANDHYD (0001)| Area (ha)= 1.09
|ID= 1 DT= 5.0 min | Total Imp(%)= 5.00 Dir. Conn.(%)= 5.00

		IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha)=	0.05	1.04
Dep. Storage	(mm)=	1.00	1.50
Average Slope	(%)=	1.00	2.00
Length	(m)=	85.24	40.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	3.21	0.833	12.54	1.583	12.05	2.33	4.51
0.167	3.21	0.917	32.44	1.667	12.05	2.42	3.88
0.250	3.97	1.000	32.44	1.750	8.62	2.50	3.88
0.333	3.97	1.083	109.68	1.833	8.62	2.58	3.39
0.417	5.20	1.167	109.68	1.917	6.65	2.67	3.39
0.500	5.20	1.250	39.67	2.000	6.65	2.75	3.02
0.583	7.43	1.333	39.67	2.083	5.38	2.83	3.02
0.667	7.43	1.417	19.15	2.167	5.38	2.92	2.72
0.750	12.54	1.500	19.15	2.250	4.51	3.00	2.72
May Eff Inton (m	n/hn)-	100 68		27 72			
	(min)	109.00		15 00			
over.		5.00		15.00			
Storage Coeff.	(min)=	2.24	(ii)	14.03 (ii)			
Unit Hyd. Tpeak	(min)=	5.00		15.00			

Unit Hyd. peak	(cms)=	0.30	0.08	
				TOTALS
PEAK FLOW	(cms)=	0.02	0.05	0.059 (iii)
TIME TO PEAK	(hrs)=	1.17	1.33	1.33
RUNOFF VOLUME	(mm)=	46.25	15.24	16.79
TOTAL RAINFALL	(mm)=	47.25	47.25	47.25
RUNOFF COEFFIC	CENT =	0.98	0.32	0.36
***** WARNING: STORA ***** WARNING:FOR AF YOU SF	AGE COEFF. REAS WITH I HOULD CONSI	IS SMALLER TH MPERVIOUS RA DER SPLITTING	HAN TIME ST TIOS BELOW G THE AREA.	EP! 20%
(i) CN PROCED	OURE SELECT	ED FOR PERVI	OUS LOSSES:	
CN* =	73.5 Ia	= Dep. Stora	age (Above)
(ii) TIME STEF	› (DT) SHOU	ILD BE SMALLEI	R OR EQUAL	
THAN THE	STORAGE CC	DEFFICIENT.		
(iii) PEAK FLO⊮	↓ DOES NOT	INCLUDE BASE	FLOW IF ANY	·
	_			
עאר טעא אין אין אין אין אין אין אין אין אין אי	I			
(כששש) עווו עעד 1 + 2 - 2			TDEAV	BV
C = 2 T I	- A	(cmc)	(hpc)	(mm)
TD1_ 1 / 00	· (()		(111.5)	(""" <i>)</i> 16 70
TDT= T (06	ן וושנין: 1	15 0.062	1.33 1.22	10./9 16 70
+ 102= 2 (00	I			10./9
======================================		===================================	====================================	16 70
טש) כ = עד	<i>2</i> 05 <i>1</i> . 2		1.00	10.75
				V
NUTE. FEAK FLC			FLOWS IF AN	
	-			
CALIB	l .			
STANDHYD (0005)	Area	(ha)= 0.40	6	
ID= 1 DT= 5.0 min	Total I	mp(%) = 31.00	0 Dir.Co	nn.(%)= 25.00
·····	-			
		IMPERVIOUS	PERVIOUS	(i)
Surface Area	(ha)=	0.14	0.32	· ·
Dep. Storage	(mm) =	1.00	1.50	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	55.56	5.00	
Mannings n	(,)	0,013	0,250	
	_	0.015	0.250	
NOTE: RATE	VEALL WAS T	RANSFORMED TO	0 5.0 MTN	. TIME STEP.
			5.0 111	
		TRANSE	ORMED HVETO	GRAPH
ТТА		TRANSF	URMED HYETO ATN I' TTM	GRAPH IE RATN TTME RAT

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	3.21	0.833	12.54	1.583	12.05	2.33	4.51

0.167 3.21 0.250 3.97 0.333 3.97 0.417 5.20 0.500 5.20 0.583 7.43 0.667 7.43 0.750 12.54	0.917 32.44 1.000 32.44 1.083 109.68 1.167 109.68 1.250 39.67 1.333 39.67 1.417 19.15 1.500 19.15	1.667 12.0 1.750 8.6 1.833 8.6 1.917 6.6 2.000 6.6 2.083 5.3 2.167 5.3 2.250 4.5	5 2.42 3.88 2 2.50 3.88 2 2.58 3.39 5 2.67 3.39 5 2.75 3.02 8 2.83 3.02 8 2.92 2.72 1 3.00 2.72
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	109.68 5.00 1.73 (ii) 5.00 0.32	78.76 5.00 4.66 (ii) 5.00 0.22	
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.04 1.17 46.25 47.25 0.98	* 0.07 1.17 29.89 47.25 0.63	TOTALS* 0.102 (iii) 1.17 33.97 47.25 0.72
<pre>***** WARNING: STORAGE COEFF. 1 (i) CN PROCEDURE SELECTE CN* = 90.5 Ia (ii) TIME STEP (DT) SHOUL THAN THE STORAGE COE (iii) PEAK FLOW DOES NOT 1</pre>	IS SMALLER THAN ED FOR PERVIOUS = Dep. Storage LD BE SMALLER C EFFICIENT. INCLUDE BASEFLC	I TIME STEP! 5 LOSSES: 9 (Above) 9R EQUAL 9W IF ANY.	
CALIB STANDHYD (0004) Area ID= 1 DT= 5.0 min Total Ir	(ha)= 1.89 np(%)= 13.00	Dir. Conn.(%)=	13.00
Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n =	IMPERVIOUS F 0.25 1.00 1.00 112.22 0.013	PERVIOUS (i) 1.64 1.50 2.00 40.00 0.250	
NOTE: RAINFALL WAS TH	ANSFORMED TO	5.0 MIN. TIME	STEP.
TIME RAIN hrs mm/hr 0.083 3.21 0.167 3.21	TRANSFORM TIME RAIM hrs mm/hr 0.833 12.54 0.917 32.44	IED HYETOGRAPH - I ' TIME RA N ' hrs mm/ I 1.583 12.0 I 1.667 12.0	IN TIME RAIN hr hrs mm/hr 5 2.33 4.51 5 2.42 3.88

0.250 0.333 0.417 0.500 0.583 0.667 0.750	3.97 3.97 5.20 5.20 5.20 7.43 7.43 12.54	1.000 1.083 1.167 1.250 1.333 1.417 1.500	32.44 109.68 109.68 39.67 39.67 19.15 19.15	1.750 1.833 1.917 2.000 2.083 2.167 2.250	8.62 8.62 6.65 5.38 5.38 4.51	2.50 2.58 2.67 2.75 2.83 2.92 3.00	3.88 3.39 3.02 3.02 2.72 2.72
Max.Eff.Inten.(m over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE ***** WARNING: STORAG ***** WARNING: STORAG (i) CN PROCEDU CN* = 7 (ii) TIME STEP THAN THE S (iii) PEAK FLOW	<pre>mm/hr)= (min) (min)= (min)= (cms)= (cms)= (hrs)= (hrs)= (mm)= ENT = GE COEFF. IS EAS WITH IMI DULD CONSIDI URE SELECTED VA.8 Ia = (DT) SHOULD GTORAGE COEF DOES NOT IN </pre>	109.68 5.00 2.64 5.00 0.29 0.07 1.17 46.25 47.25 0.98 S SMALLE PERVIOUS ER SPLIT D FOR PE = Dep. S D BE SMA FFICIENT NCLUDE E	(ii) ER THAN 5 RATIOS TTING TH ERVIOUS Storage ALLER OR T. BASEFLOW	29.09 15.00 14.20 (i: 15.00 0.08 0.09 1.33 15.93 47.25 0.34 TIME STEL BELOW 20 E AREA. LOSSES: (Above) EQUAL IF ANY.	i) *TO 0 19 4 2 8	TALS* .117 (iii) 1.17 9.87 7.25 0.42	
ADD HYD (0006) 1 + 2 = 3 ID1= 1 (000 + ID2= 2 (000 ====== ID = 3 (000 NOTE: PEAK FLOW	ARI (h: 2.3): 2.3 94): 1.3 96): 4.3 IS DO NOT II	EA QF a) (c 24 0.1 89 0.1 ====== 13 0.2 NCLUDE E	PEAK cms) L21 L17 236 BASEFLOW	TPEAK (hrs) 1.33 1.17 1.33 S IF ANY	R.V. (mm) 16.79 19.87 ===== 18.19		
ADD HYD (0006) 3 + 2 = 1 ID1= 3 (000 + ID2= 2 (000	AR (hi 06): 4.: 05): 0.4	EA QF a) (c 13 0.2 46 0.1	PEAK cms) 236 L02	TPEAK (hrs) 1.33 1 1.17 1	R.V. (mm) 18.19 33.97		

ID = 1 (0006): 4.59 0.305 1.17 19.79 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	3.21	0.833	12.54	1.583	12.05	2.33	4.51
0.167	3.21	0.917	32.44	1.667	12.05	2.42	3.88
0.250	3.97	1.000	32.44	1.750	8.62	2.50	3.88
0.333	3.97	1.083	109.68	1.833	8.62	2.58	3.39
0.417	5.20	1.167	109.68	1.917	6.65	2.67	3.39
0.500	5.20	1.250	39.67	2.000	6.65	2.75	3.02
0.583	7.43	1.333	39.67	2.083	5.38	2.83	3.02
0.667	7.43	1.417	19.15	2.167	5.38	2.92	2.72
0.750	12.54	1.500	19.15	2.250	4.51	3.00	2.72

Max.Eff.Inten.(n	nm/hr)=	109.68	34.07	
over	(min)	5.00	15.00	
Storage Coeff.	(min)=	2.60 (ii)	13.45 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	15.00	
Unit Hyd. peak	(cms)=	0.29	0.08	
				TOTALS
PEAK FLOW	(cms)=	0.05	0.09	0.115 (iii)
TIME TO PEAK	(hrs)=	1.17	1.33	1.33
RUNOFF VOLUME	(mm)=	46.25	17.09	20.00
TOTAL RAINFALL	(mm)=	47.25	47.25	47.25
RUNOFF COEFFICIE	ENT =	0.98	0.36	0.42

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA.

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 75.2 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ CALIB STANDHYD (0007) | Area (ha)= 1.06 |ID= 1 DT= 5.0 min | Total Imp(%)= 6.00 Dir. Conn.(%)= 6.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.06 1.00 Surface Area(me)Dep. Storage(mm)=Average Slope(%)= (mm)= 1.00 (%)= 1.00 (m)= 84.06 1.50 2.00 40.00 Length = Mannings n 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN | ' TIME RAIN | TIME TIME RAIN mm/hr | hrs mm/hr | hrs mm/hr | hrs hrs mm/hr 0.083 3.21 0.833 12.54 1.583 12.05 2.33 4.51 0.167 3.21 | 0.917 32.44 | 1.667 12.05 | 2.42 3.88 0.250 3.97 | 1.000 32.44 | 1.750 8.62 | 2.50 3.88 0.3333.971.083109.681.8338.622.583.390.4175.201.167109.681.9176.652.673.390.5005.201.25039.672.0006.652.753.02 0.5837.431.33339.672.0835.382.833.020.6677.431.41719.152.1675.382.922.72 0.750 12.54 | 1.500 19.15 | 2.250 4.51 | 3.00 2.72 Max.Eff.Inten.(mm/hr)= 109.68 27.73 over (min)105.0027.73over (min)5.0015.00Storage Coeff. (min)=2.22 (ii)14.01 (ii)Unit Hyd. Tpeak (min)=5.0015.00Unit Hyd. peak (cms)=0.300.08 *TOTALS* PEAK FLOW(cms)=0.02TIME TO PEAK(hrs)=1.17RUNOFF VOLUME(mm)=46.25TOTAL RAINFALL(mm)=47.25 0.05 0.058 (iii) 1.33 1.33 15.24 17.10 47.25 47.25 RUNOFF COEFFICIENT = 0.98 0.32 0.36

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA.

(i) CN PROCEDU	RESELECTE	ED FOR P	ERVIOUS	LOSSES:			
CN* = /. (ii) TIME STEP	3.5 Ia (DT) SHOUI	= Dep. 1	Storage ALLER OI	(Above) R FOLIAI			
THAN THE STE	TORAGE CO	EFFICIEN	T.	LAOVE			
(iii) PEAK FLOW I	DOES NOT	INCLUDE	BASEFLO	W IF ANY.			
CALTB							
STANDHYD (0008)	Area	(ha)=	0.46				
ID= 1 DT= 5.0 min	Total In	np(%)=	6.00	Dir. Conn	.(%)=	6.00	
]	[MPERVIO	US PI	ERVIOUS (i)		
Surface Area	(ha)=	0.03		0.43			
Dep. Storage	(mm)=	1.00		1.50			
Average Slope	(%)=	1.00		2.00			
Length	(m)=	55.38		40.00			
Mannings n	=	0.013		0.250			
NOTE: RAINE	ALL WAS TE	RANSFORM	ED TO	5.0 MIN.	TIME STE	Ρ.	
	_		-		_		
		тр					
ттме	ΒΛΤΝ	IRA TTME		L' TTME	ΑΡΠ ΒΛΤΝ		RATN
I INE	mm/hn	l ITUE	mm/hn		mm/hn	IIME hnc	mm/hn
0 083	3 21		12 54		12 05 1	2 33	<i>A</i> 51
0.005	3 21		32 14		12.05	2.55	3 88
0.250	3,97	1.000	32.44	1,750	8.62	2.50	3.88
0.230	3 97	1 083	109 68	1 1 833	8 62	2.50	3 39
0.417	5.20	1,167	109.68	1.917	6.65	2.50	3.39
0.500	5.20	1.250	39.67	2.000	6.65	2.75	3.02
0.583	7.43	1.333	39.67	2.083	5.38	2.83	3.02
0.667	7.43	1.417	19.15	2.167	5.38	2.92	2.72
0.750	12.54	1.500	19.15	2.250	4.51	3.00	2.72
	(1)						
Max.Ett.Inten.(m	m/hr)=	109.68		27.73			
over	(min)	5.00		15.00	、		
Storage Coeff.	(min)=	1./3	(11)	13.52 (11)		
Unit Hyd. Греак	(min)=	5.00		15.00			
Опіт Нуд. реак	(cms)=	0.32		0.08	***	ALC*	
	(cmc)-	0 01		0.02	*101 o	HLJ" AJC /:::/	
TIME TO DEAK	(CIIIS)= (bpc)-	1 17		20.ש 1 ככ 1	U. 1	(111) ۲۷۵ دد	
	(111'S)= (mm)-	1.1/ 16 25		15 24	1 T		
	(mm) =	40.25		17.24 47.25	1/	צש. זר	
IUTAL KAINFALL		4/.25		4/.20	4/	.25	
KUNUFF CUEFFICIE	NI =	0.98		0.52	0	. 30	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 73.5 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. ADD HYD (0009) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) | 1 + 2 = 3 | ------ID1= 1 (0007): 1.06 0.058 1.33 17.10 + ID2= 2 (0008): 0.46 0.026 1.33 17.09 ID = 3 (0009): 1.52 0.083 1.33 17.09 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ CALIB | STANDHYD (0011) | Area (ha)= 0.37 |ID= 1 DT= 5.0 min | Total Imp(%)= 47.00 Dir. Conn.(%)= 30.00 ------IMPERVIOUS PERVIOUS (i)

 Surface Area
 (ha)=
 0.17

 Dep. Storage
 (mm)=
 1.00

 Average Slope
 (%)=
 1.00

 Length
 (m)=
 49.60

 Mannings n
 =
 0.013

 0.20 1.50 2.00 5.00 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN | ' TIME RAIN | TIME TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 0.083 3.21 | 0.833 12.54 | 1.583 12.05 | 2.33 4.51 0.167 3.21 | 0.917 32.44 | 1.667 12.05 | 2.42 3.88 0.250 3.97 | 1.000 32.44 | 1.750 8.62 | 2.50 3.88 0.3333.97| 1.083109.68| 1.8338.62| 2.583.390.4175.20| 1.167109.68| 1.9176.65| 2.673.39 0.500 5.20 | 1.250 39.67 | 2.000 6.65 | 2.75 3.02 7.43 | 1.333 39.67 | 2.083 5.38 | 2.83 3.02 0.583 0.667 7.43 | 1.417 19.15 | 2.167 5.38 | 2.92 2.72 19.15 | 2.250 4.51 | 3.00 2.72 0.750 12.54 | 1.500 Max.Eff.Inten.(mm/hr)= 109.68 103.77 over (min) 5.00 5.00

Storage Coeff. (min)=1.62 (ii)4.07 (ii)Unit Hyd. Tpeak (min)=5.005.00 Unit Hyd. peak (cms)= 0.32 0.24 *TOTALS* PEAK FLOW(cms)=0.03TIME TO PEAK(hrs)=1.17RUNOFF VOLUME(mm)=46.25TOTAL RAINFALL(mm)=47.25RUNOFF COEFFICIENT=0.98 0.06 1.17 32.08 0.089 (iii) 1.17 36.32 47.25 47.25 0.77 0.68 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 90.5 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. ADD HYD (0012)

 + 2 = 3
 |
 AREA
 QPEAK
 TPEAK
 R.V.

 ----- (ha)
 (cms)
 (hrs)
 (mm)

 ID1= 1
 (0010):
 1.79
 0.115
 1.33
 20.00

 | 1 + 2 = 3 | -----+ ID2= 2 (0011): 0.37 0.089 1.17 36.32 -----ID = 3 (0012): 2.16 0.190 1.17 22.79 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ADD HYD (0012) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 3 + 2 = 1 -----ID1= 3 (0012): 2.16 0.190 1.17 22.79 + ID2= 2 (0009): 1.52 0.083 1.33 17.09 ------ID = 1 (0012):3.68 0.254 1.17 20.44 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ------ADD HYD (0014) AREA QPEAK TPEAK (ha) (cms) (hrs) R.V. (mm) 1 + 2 = 3 -----ID1= 1 (0012): 3.68 0.254 1.17 20.44 + ID2= 2 (0013): 0.49 0.047 1.17 25.99

_____ ID = 3 (0014): 4.17 0.300 1.17 21.09 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ------| ADD HYD (0014)| AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 3 + 2 = 1 (ha) (cms) (hrs) (mm) 4.17 0.300 1.17 21.09 ID1= 3 (0014): + ID2= 2 (0006): 1.17 19.79 4.59 0.305 ID = 1 (0014):8.76 0.606 1.17 20.41 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ FINISH

_____ SSSSS U U (v 6.2.2015) V V Ι А L V V Т SS U ΑΑ U _____ V V Ι SS U U AAAAA L V V Ι SS A L U UΑ VV Ι SSSSS UUUUU Α A LLLLL ΤΤΤΤΤ ΤΤΤΤΤ Η 000 H Y Y M М 000 ТΜ 0 0 Т Н Н ΥY MM MM 0 Т 0 т 0 0 Т Н Н Υ М M O 0 000 Т Т Υ М Μ 000 Н Н Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved. ***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Output filename: C:\Users\jangsoo.lee\AppData\Local\Civica\VH5\72fe312b-9676-436f-b6d3-c40a805b884b\3 a012428-2a1e-4b6b-b2f8-892d23b32abb Summary filename: C:\Users\jangsoo.lee\AppData\Local\Civica\VH5\72fe312b-9676-436f-b6d3-c40a805b884b\3 a012428-2a1e-4b6b-b2f8-892d23b32abb DATE: 01/26/2024 TIME: 01:24:01 USER: COMMENTS: _____ ------** ** SIMULATION : 100yr-3hr 10min Chicago CHICAGO STORM IDF curve parameters: A=4688.000 | Ptotal= 87.06 mm | B= 17.000 C= 0.962

	used in	: INTE	NSITY =	A / (t	+ B)^C		
	Duratic Storm t Time to	on of sto ime step peak ra	rm = 3 = 10 tio = 0	3.00 hrs 3.00 min 3.38			
TIME hrs 0.00 0.17 0.33 0.50 0.67	RAIN mm/hr 4.42 5.87 8.33 13.04 24.27	TIME hrs 0.83 1.00 1.17 1.33 1.50	RAIN mm/hr 66.23 196.54 81.01 38.79 23.19	' TIME ' hrs 1.67 1.83 2.00 2.17 2.33	RAIN mm/hr 15.63 11.36 8.71 6.93 5.68	TIME hrs 2.50 2.67 2.83	RAIN mm/hr 4.76 4.07 3.53
CALIB STANDHYD (0013) ID= 1 DT= 5.0 min	Area Total Im	(ha)= np(%)= 2	0.49 8.00 [)ir. Conn	.(%)= 20	.00	
	I	MPERVIOU	S PEF	RVIOUS (i)		
Surface Area	(ha)=	0.14		0.35	,		
Dep. Storage	(mm)=	1.00		1.50			
Average Slope	(%)= (~~)	1.00		2.00			
Mannings n	= (m)	0.013	6	10.00).250			
NOTE: RAINFA	ALL WAS TR	ANSFORME	D TO 5	5.0 MIN.	TIME STEP	·.	
		TRA	NSEORMER		Δ ρ μ		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	 mm/hr	hrs	mm/hr
0.083	4.42	0.833	24.27	1.583	23.19	2.33	6.93
0.167	4.42	0.917	66.23	1.667	23.19	2.42	5.68
0.250	5.8/	1.000	66.23 106 57	1.750	15.63	2.50	5.68
0.333	8.33	1.167	196.54 196.54	1.917	11.36	2.58	4.76
0.500	8.33	1.250	81.01	2.000	11.36	2.75	4.07
0.583	13.04	1.333	81.01	2.083	8.71	2.83	4.07
0.667	13.04	1.417	38.79	2.167	8.71	2.92	3.53
0.750	24.27	1.500	38./9	2.250	6.93	3.00	3.53
Max.Eff.Inten.(m	m/hr)=	196.54	13	35.11			
over	(min)	5.00	1	10.00			
Storage Coeff.	(min)=	1.39	(ii)	7.65 (ii)		
Unit Hyd. Ipeak Unit Hyd poak	(min)= (cms)-	5.00 22 a	1	10.00 0 13			
onite nyu. peak	(cm3) =			0.10	*TOTA	LS*	

	PEAK FLOW	(cms)=	0.05		0.10	0.1	36 (iii)	
	TIME TO PEAK	(hrs)=	1.17		1.25	1.	17	
	RUNOFF VOLUME	(mm)=	86.06		52.31	59.	06	
	TOTAL RAINFALL	(mm)=	87.06		87.06	87.	06	
	RUNOFF COEFFICIE	NT =	0.99		0.60	0.	68	
****	· WARNING · STORAG	E COFFE. T	ς ςμαιιι	FR THΔN	TTME STEP	I		
****	WARNING:FOR ARE	AS WITH IM	PERVIOU	S RATIOS	5 BELOW 20	%		
	YOU SHO	ULD CONSID	ER SPLI	TTING TH	HE AREA.	-		
	(i) CN PROCEDU	RE SELECTE	D FOR PI	ERVIOUS	LOSSES:			
	$CN^* = 8$	0.7 Ia	= Dep. S	Storage	(Above)			
	(11) IIME SIEP	(DI) SHOUL	D BE SMA	ALLER OH T	REQUAL			
	(iii) DEAK FLOW	TURAGE CUE	FFICIEN					
	(III) PEAK FLOW	DUES NUT I	NCLUDE I	DASEFLU	N IF ANY.			
CAL	IB							
STA	NDHYD (0002)	Area	(ha)=	1.15				
ID=	1 DT= 5.0 min	Total Im	p(%)=	5.00	Dir. Conn	.(%)= 5	.00	
		Т	MPERVIO	US PI	RVTOUS (i)		
	Surface Area	(ha)=	0.06		1.09	/		
	Dep. Storage	(mm) =	1.00		1.50			
	Average Slope	(%)=	1.00		2.00			
	Length	(m)=	87.56		40.00			
	Mannings n	=	0.013		0.250			
	NOTE: RAINF	ALL WAS TR	ANSFORM	ED TO	5.0 MIN.	TIME STEP	•	
			TR/	ANSFORM	ED HYETOGR	APH		
	TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
	hrs	mm/hr	hrs	mm/hr	'hrs	 mm/hr	hrs	mm/hr
	0.083	4.42	0.833	24.27	1.583	23.19	2.33	6.93
	0.167	4.42	0.917	66.23	1.667	23.19	2.42	5.68
	0.250	5.87	1.000	66.23	1.750	15.63	2.50	5.68
	0.333	5.87	1.083	196.54	1.833	15.63	2.58	4.76
	0.417	8.33	1.167	196.54	1.917	11.36	2.67	4.76
	0.500	8.33	1.250	81.01	2.000	11.36	2.75	4.07
	0.583	13.04	1.333	81.01	2.083	8.71	2.83	4.07
	0.667	13.04	1.417	38.79	2.167	8.71	2.92	3.53
	0.750	24.27	1.500	38.79	2.250	6.93	3.00	3.53
	May Eff Tatas (m	m /b n)	106 54		02 21			
	max.err.inten.(m	(min)	196.54		92.31 10 00			
	Stopage Cooff	(min) =	00.C	(;;)	0 00 (:: TO'OO	<u>۱</u>		
	Unit Hyd Theak	$(\min) = (\min)$	5 00	(11)	10 00)		
	Unit Hyd naak	$(m \pm m) =$	00.CC 0 22		A 12			
	onite nya. peak	() –	0.52		0.12			

				TOTALS
PEAK FLOW	(cms)=	0.03	0.20	0.210 (iii)
TIME TO PEAK	(hrs)=	1.17	1.25	1.25
RUNOFF VOLUME	(mm)=	86.06	41.32	43.56
TOTAL RAINFALL	(mm)=	87.06	87.06	87.06
RUNOFF COEFFICI	ENT =	0.99	0.47	0.50

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 73.5 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

-----| CALIB |
| STANDHYD (0001)| Area (ha)= 1.09
|ID= 1 DT= 5.0 min | Total Imp(%)= 5.00 Dir. Conn.(%)= 5.00

		IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha)=	0.05	1.04
Dep. Storage	(mm)=	1.00	1.50
Average Slope	(%)=	1.00	2.00
Length	(m)=	85.24	40.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

---- TRANSFORMED HYETOGRAPH ----

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	4.42	0.833	24.27	1.583	23.19	2.33	6.93
0.167	4.42	0.917	66.23	1.667	23.19	2.42	5.68
0.250	5.87	1.000	66.23	1.750	15.63	2.50	5.68
0.333	5.87	1.083	196.54	1.833	15.63	2.58	4.76
0.417	8.33	1.167	196.54	1.917	11.36	2.67	4.76
0.500	8.33	1.250	81.01	2.000	11.36	2.75	4.07
0.583	13.04	1.333	81.01	2.083	8.71	2.83	4.07
0.667	13.04	1.417	38.79	2.167	8.71	2.92	3.53
0.750	24.27	1.500	38.79	2.250	6.93	3.00	3.53
Max.Eff.Inten.(mm	ı/hr)=	196.54		92.31			
over (min)	5.00		10.00			
Storage Coeff. (min)=	1.77	(ii)	9.06 (ii)		
Unit Hyd. Tpeak (min)=	5.00		10.00			

Unit Hyd. peak (cms)= 0.32 0.12 *TOTALS* 0.03 PEAK FLOW (cms)= 0.19 0.199 (iii) (hrs)= 1.17 86.06 87.06 TIME TO PEAK 1.17 1.25 1.25 (mm)= 41.32 RUNOFF VOLUME 43.56 TOTAL RAINFALL (mm)= 87.06 87.06 RUNOFF COEFFICIENT = 0.99 0.47 0.50 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 73.5 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ | ADD HYD (0003)| AREA QPEAK TPEAK | 1 + 2 = 3 | R.V. $\begin{array}{c} (ha) & (cms) & (hrs) & (mm) \\ ID1= 1 & (0001): & 1.09 & 0.199 & 1.25 & 43.56 \\ \hline \end{array}$ + ID2= 2 (0002): 1.15 0.210 1.25 43.56 -----ID = 3 (0003): 2.24 0.410 1.25 43.56 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ | CALIB STANDHYD (0005) Area (ha)= 0.46 |ID= 1 DT= 5.0 min | Total Imp(%)= 31.00 Dir. Conn.(%)= 25.00 ------PERVIOUS (i) IMPERVIOUS Surface Area(ha)=0.14Dep. Storage(mm)=1.00 0.32 1.50 (%)= Average Slope 1.00 2.00 (%) = 1.00 2.00 (m) = 55.56 5.00 = 0.013 0.250 Length Mannings n NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----N

TIME	RAIN	TIME	RAIN '	TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr '	hrs	mm/hr	hrs	mm/hr
0.083	4.42	0.833	24.27 1	L.583	23.19	2.33	6.93

0.167 4.42 0.250 5.87 0.333 5.87 0.417 8.33 0.500 8.33 0.583 13.04 0.667 13.04 0.750 24.27	0.917 66.2 1.000 66.2 1.083 196.5 1.167 196.5 1.250 81.0 1.333 81.0 1.417 38.7 1.500 38.7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23.19 2 15.63 2 15.63 2 11.36 2 11.36 2 8.71 2 6.93 3	2.42 5.68 2.50 5.68 2.58 4.76 2.67 4.76 2.75 4.07 2.83 4.07 2.92 3.53 3.00 3.53
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	196.54 5.00 1.37 (ii) 5.00 0.33	174.89 5.00 3.69 (ii) 5.00 0.25	******	- *
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.06 1.17 86.06 87.06 0.99	0.15 1.17 66.61 87.06 0.77	*101ALS 0.216 1.17 71.46 87.06 0.82	5* 5 (iii) 7 5 5 2
<pre>***** WARNING: STORAGE COEFF. (i) CN PROCEDURE SELECT CN* = 90.5 Ia (ii) TIME STEP (DT) SHOU THAN THE STORAGE CO (iii) PEAK FLOW DOES NOT</pre>	IS SMALLER THA ED FOR PERVIOU = Dep. Storag UD BE SMALLER EFFICIENT. INCLUDE BASEFL	N TIME STEP! S LOSSES: e (Above) OR EQUAL OW IF ANY.		
CALIB STANDHYD (0004) Area ID= 1 DT= 5.0 min Total I	(ha)= 1.89 mp(%)= 13.00	Dir. Conn.	(%)= 13.0	ð0
Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = NOTE: RAINFALL WAS T	IMPERVIOUS 0.25 1.00 1.00 112.22 0.013 RANSFORMED TO	PERVIOUS (i) 1.64 1.50 2.00 40.00 0.250 5.0 MIN. T	IME STEP.	
TIME RAIN hrs mm/hr 0.083 4.42 0.167 4.42	TRANSFOR TIME RAI hrs mm/h 0.833 24.2 0.917 66.2	MED HYETOGRA N ' TIME r ' hrs 7 1.583 3 1.667	PH RAIN mm/hr 23.19 2 23.19 2	TIME RAIN hrs mm/hr 2.33 6.93 2.42 5.68

0.250 5.87 0.333 5.87 0.417 8.33 0.500 8.33 0.583 13.04 0.667 13.04 0.750 24.27	1.000 66.23 1.083 196.54 1.167 196.54 1.250 81.01 1.333 81.01 1.417 38.79 1.500 38.79	3 1.750 15. 4 1.833 15. 4 1.917 11. 1 2.000 11. 1 2.083 8. 9 2.167 8. 9 2.250 6.	63 2.50 5.68 63 2.58 4.76 36 2.67 4.76 36 2.75 4.07 71 2.83 4.07 71 2.92 3.53 93 3.00 3.53	
<pre>Max.Eff.Inten.(mm/hr)=</pre>	196.54 5.00 2.09 (ii) 5.00 0.31 0.13 1.17 86.06	96.03 10.00 9.26 (ii) 10.00 0.12 0.30 1.25 42.75	*TOTALS* 0.376 (iii) 1.17 48 38	
TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	80.00 87.06 0.99	42.73 87.06 0.49	48.38 87.06 0.56	
YOU SHOULD CONS (i) CN PROCEDURE SELECT CN* = 74.8 Ia (ii) TIME STEP (DT) SHOU THAN THE STORAGE CO (iii) PEAK FLOW DOES NOT	IDER SPLITTING T IED FOR PERVIOUS = Dep. Storage JLD BE SMALLER (DEFFICIENT. INCLUDE BASEFL(THE AREA. LOSSES: (Above) R EQUAL W IF ANY.		
$\begin{vmatrix} AUD & HYD & (& 0006) \\ 1 & 1 & 2 & 3 & & A \\ ID1 & 1 & (& 0003) \\ + & ID2 & 2 & (& 0004) \\ \end{vmatrix}$	AREA QPEAK (ha) (cms) 2.24 0.410	TPEAK R.V (hrs) (mm 1.25 43.56 1.17 48.38	· · · · · · · · · · · · · · · · · · ·	
ID1= 1 (0006) ID1= 1 (0003): ID1= 2 (0004): ID = 3 (0006): NOTE: PEAK FLOWS DO NOT	AREA QPEAK (ha) (cms) 2.24 0.410 1.89 0.376 4.13 0.776 INCLUDE BASEFLO	TPEAK R.V (hrs) (mm 1.25 43.56 1.17 48.38 1.25 45.76 WS IF ANY.		

_______ ID = 1 (0006):4.59 0.958 1.17 48.35 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ CALIB | STANDHYD (0010)| Area (ha)= 1.79 |ID= 1 DT= 5.0 min | Total Imp(%)= 17.00 Dir. Conn.(%)= 10.00 ------IMPERVIOUS PERVIOUS (i) Surface Area(ha)=0.30Dep. Storage(mm)=1.00Average Slope(%)=1.00 1.48 1.50 2.00 (m)= 109.21 Length 40.00 Mannings n 0.013 0.250 = NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN | TIME RAIN | TIME TIME RAIN mm/hr | hrs mm/hr | hrs mm/hr | hrs hrs mm/hr 4.42 | 0.833 24.27 | 1.583 23.19 | 2.33 0.083 6.93 4.42 | 0.917 66.23 | 1.667 0.167 23.19 2.42 5.68 0.250 5.87 | 1.000 66.23 | 1.750 15.63 2.50 5.68 0.333 5.87 | 1.083 196.54 | 1.833 15.63 | 2.58 4.76 0.417 8.33 | 1.167 196.54 | 1.917 11.36 | 2.67 4.76 0.500 8.33 | 1.250 81.01 | 2.000 11.36 | 2.75 4.07 0.583 13.04 | 1.333 81.01 | 2.083 8.71 | 2.83 4.07 0.667 13.04 | 1.417 38.79 | 2.167 8.71 | 2.92 3.53 0.750 24.27 | 1.500 38.79 | 2.250 6.93 | 3.00 3.53 Max.Eff.Inten.(mm/hr)= 196.54 110.65

 over (min)
 5.00

 Storage Coeff. (min)=
 2.06 (ii)

 Unit Hyd. Tpeak (min)=
 5.00

 Unit Hyd. peak (cms)=
 0.31

 10.00 8.83 (ii) 10.00 0.12 *TOTALS* 0.32 PEAK FLOW (cms)= 0.10 0.368 (iii) (hrs)= 1.17 (mm)= 86.06 (mm)= 87.06 TIME TO PEAK (hrs)= 1.25 1.25 45.05 RUNOFF VOLUME 49.15

87.06

0.52

87.06

0.56

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA.

TOTAL RAINFALL

RUNOFF COEFFICIENT =

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

0.99

CN* = (ii) TIME STEF THAN THE (iii) PEAK FLOW	75.2 Ia (DT) SHOUI STORAGE COI DOES NOT I	= Dep. Sto _D BE SMALL EFFICIENT. INCLUDE BAS	erage (Above) ER OR EQUAL EFLOW IF ANY.			
CALIB STANDHYD (0007) ID= 1 DT= 5.0 min	- Area Total Ir	(ha)= 1. np(%)= 6.	06 00 Dir.Con	n.(%)= 6	.00	
	(h -)		PERVIOUS (:	i)		
Surface Area	(na)=	0.06	1.00			
Dep. Storage	(mm) = (%) =	1.00	1.50			
Average Slope	(%)= (m)-	21.00	2.00			
Mannings n	()=	04.00 0 013	40.00			
riannii 11g5 n	—	0.015	0.250			
NOTE: RAIN	FALL WAS TH	RANSFORMED	TO 5.0 MIN.	TIME STEP		
		TRANS	FORMED HYETOGI	RAPH		
TIN	1E RAIN	TIME	RAIN ' TIME	RAIN	TIME	RAIN
hr	rs mm/hr	hrs m	m/hr ' hrs	mm/hr	hrs	mm/hr
0.08	33 4.42	0.833 2	4.27 1.583	23.19	2.33	6.93
0.16	57 4.42	0.917 6	6.23 1.667	23.19	2.42	5.68
0.25	50 5.87	1.000 6	6.23 1.750	15.63	2.50	5.68
0.33	33 5.87	1.083 19	6.54 1.833	15.63	2.58	4.76
0.41	L7 8.33	1.167 19	6.54 1.917	11.36	2.67	4.76
0.50	8.33	1.250 8	1.01 2.000	11.36	2.75	4.07
0.58	33 13.04	1.333 8	1.01 2.083	8.71	2.83	4.07
0.66	57 13.04	1.417 3	8.79 2.167	8.71	2.92	3.53
0.75	50 24.27	1.500 3	8.79 2.250	6.93	3.00	3.53
	(106 54	02.21			
Max.Eff.Inten.((mm/nr)=	196.54	92.31			
over	r (min)	5.00	10.00	• 、		
Storage Coeff.	(min)=	1.76 (1	.1) 9.04 (1:	1)		
Unit Hyd. Tpeak	(min)=	5.00	10.00			
UNIC Hyd. peak	(CIIIS) =	0.52	0.12	*TOTA	C*	
DEAK ELOW	(cms)-	0 03	0 1 Q	ο 10	 35 (iii)	
TIME TO DEAV	(lms) =	1 17	1 25	1)) (TTT))2	
	(mm) -	26 06	<u> </u>	т., ЛЛ (20	
	(mm) =	87 06	87 06	44.0 87 (26 26	
RUNOFF COFFETCI	(IIIII)- FNT =	0,99	0 47	07.0 0	51	
		0.00	0.7/	0.	/ -	

(i) CN PROCEDU	RESELECTE	ED FOR P	ERVIOUS	LOSSES:			
CN* = /. (ii) TIME STEP	3.5 Ia (DT) SHOUU	= Dep. 1	Storage	(Above) R FOLIAI			
THAN THE STEL	TORAGE CO	EFFICIEN	T.	I LQUAL			
(iii) PEAK FLOW I	DOES NOT	INCLUDE	BASEFLO	W IF ANY.			
CALIB STANDHYD (0008)	Δrea	(ha)=	0.46				
ID= 1 DT= 5.0 min	Total In	np(%)=	6.00	Dir. Conn	.(%)=	6.00	
Cumface Area	[/ha)		JS PI	ERVIOUS (i)		
Surface Area	(na)=	0.03		0.43			
Dep. Storage	= (mm) =	1.00		1.50			
Average Stope	(//) = (m) =	L.00		2.00			
Length Mannings n	(m)=	0 012		40.00			
Mainings II	=	0.013		0.250			
NOTE: RAINF	ALL WAS TH	RANSFORM	ED TO	5.0 MIN.	TIME STE	EP.	
		TR/	ANSFORM	ED HYETOGR	APH·	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	4.42	0.833	24.27	1.583	23.19	2.33	6.93
0.167	4.42	0.917	66.23	1.667	23.19	2.42	5.68
0.250	5.87	1.000	66.23	1.750	15.63	2.50	5.68
0.333	5.87	1.083	196.54	1.833	15.63	2.58	4.76
0.417	8.33	1.167	196.54	1.917	11.36	2.67	4.76
0.500	8.33	1.250	81.01	2.000	11.36	2.75	4.07
0.583	13.04	1.333	81.01	2.083	8.71	2.83	4.07
0.667	13.04	1.417	38.79	2.167	8.71	2.92	3.53
0.750	24.27	1.500	38.79	2.250	6.93	3.00	3.53
Max.Eff.Inten.(m	m/hr)=	196.54		92.31			
over	(min)	5.00		10.00			
Storage Coeff.	(min)=	1.37	(ii)	8.65 (ii)		
Unit Hyd. Tpeak	(min)=	5.00		10.00			
Unit Hyd. peak	(cms)=	0.33		0.12			
					T01	TALS	
PEAK FLOW	(cms)=	0.02		0.08	0.	.086 (iii)	
TIME TO PEAK	(hrs)=	1.17		1.25	2	1.25	
RUNOFF VOLUME	(mm)=	86.06		41.32	44	4.00	
TOTAL RAINFALL	(mm)=	87.06		87.06	87	7.06	
RUNOFF COEFFICIE	NT =	0.99		0.47	(9.51	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 73.5 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. ADD HYD (0009) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) | 1 + 2 = 3 | -----ID1= 1 (0007): 1.06 0.195 1.25 44.00 + ID2= 2 (0008): 0.46 0.086 1.25 44.00 _____ ID = 3 (0009): 1.52 0.280 1.25 44.00 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ CALIB | STANDHYD (0011)| Area (ha)= 0.37 ID= 1 DT= 5.0 min | Total Imp(%)= 47.00 Dir. Conn.(%)= 30.00 ------IMPERVIOUS PERVIOUS (i) Surface Area(ha)=Dep. Storage(mm)=Average Slope(%)= 0.17 0.20 (mm) = 1.00 (%) = 1.00 (m) = 49.60 = 0.0131.50 2.00 Length 5.00 Mannings n 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN | TIME RAIN | TIME TIME RAIN mm/hr | hrs mm/hr | hrs mm/hr | hrs hrs mm/hr 0.083 4.42 0.833 24.27 1.583 23.19 2.33 6.93 0.167 4.42 | 0.917 66.23 | 1.667 23.19 | 2.42 5.68 0.250 5.87 | 1.000 66.23 | 1.750 15.63 | 2.50 5.68 0.333 5.87 | 1.083 196.54 | 1.833 15.63 | 2.58 4.76 0.417 8.33 | 1.167 196.54 | 1.917 11.36 | 2.67 4.76 0.500 8.33 | 1.250 81.01 | 2.000 11.36 | 2.75 4.07 0.583 13.04 | 1.333 81.01 | 2.083 8.71 | 2.83 4.07 0.667 13.04 | 1.417 38.79 | 2.167 8.71 | 2.92 3.53 0.750 24.27 | 1.500 38.79 | 2.250 6.93 | 3.00 3.53

Max.Eff.Inten.(mm/hr)=	196.54	222.38
over (min)	5.00	5.00

Storage Coeff. (min)=1.28 (ii)3.22 (ii)Unit Hyd. Tpeak (min)=5.005.00 Unit Hyd. peak (cms)= 0.33 0.27 *TOTALS* 0.06 0.12 1 17 PEAK FLOW (cms)= TIME TO PEAK (hrs)= 0.181 (iii) 1.17 1.17 69.57 86.06 RUNOFF VOLUME (mm)= 74.52 TOTAL RAINFALL (mm) = 87.06 RUNOFF COEFFICIENT = 0.99 87.06 87.06 0.80 0.86 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 90.5 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. ADD HYD (0012) | 1 + 2 = 3 | -----+ ID2= 2 (0011): 0.37 0.181 1.17 74.52 -----ID = 3 (0012): 2.16 0.539 1.17 53.49 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ADD HYD (0012) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 3 + 2 = 1 -----ID1= 3 (0012): 2.16 0.539 1.17 53.49 + ID2= 2 (0009): 1.52 0.280 1.25 44.00 ------ID = 1 (0012):3.68 0.795 1.17 49.57 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ------ADD HYD (0014)

 AREA
 QPEAK
 TPEAK
 R.V.

 ID1=
 1
 (0012):
 3.68
 0.795
 1.17
 49.57

 + ID2=
 2
 (0013):
 0.49
 0.136
 1.17
 59.06

 1 + 2 = 3 -----

_____ ID = 3 (0014): 4.17 0.931 1.17 50.68 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ------| ADD HYD (0014)| AREAQPEAKTPEAKR.V.(ha)(cms)(hrs)(mm)4.170.9311.1750.68 3 + 2 = 1 ID1= 3 (0014): + ID2= 2 (0006): 4.59 0.958 1.17 48.35 -----ID = 1 (0014): 8.76 1.889 1.17 49.46 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____

Post-Development Conditions (24mm 4hour controlled)

Post-Development Conditions (5-year controlled)

Post-Development Conditions (100-year controlled)

_____ SSSSS U U (v 6.2.2015) V V Ι А L V V Т SS U ΑΑ U _____ V V Ι SS U U AAAAA L Ι SS A L V V U UΑ VV Ι SSSSS UUUUU Α A LLLLL ΤΤΤΤΤ ΤΤΤΤΤ Η 000 H Y Y M М 000 ТΜ 0 0 Т Н Н ΥY MM MM 0 Т 0 т 0 0 Т Н Н Υ М М 0 0 000 Т Т Υ М Μ 000 Н Н Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved. ***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Output filename: C:\Users\jangsoo.lee\AppData\Local\Civica\VH5\72fe312b-9676-436f-b6d3-c40a805b884b\6 118e436-e359-4e69-ba0d-1d73654ab066 Summary filename: C:\Users\jangsoo.lee\AppData\Local\Civica\VH5\72fe312b-9676-436f-b6d3-c40a805b884b\6 118e436-e359-4e69-ba0d-1d73654ab066 DATE: 01/26/2024 TIME: 01:25:57 USER: COMMENTS: _____ ------** ** SIMULATION : 1yr_4hr 10min Chicago CHICAGO STORM IDF curve parameters: A= 367.000 | Ptotal= 31.20 mm | 5.000 B= C= 0.700
	used i	n: INTE	NSITY =	A / (t	+ B)^C		
	Durati Storm Time t	on of sto time step o peak ra	rm = = 1 tio =	4.00 hrs 0.00 min 0.38			
TIME hrs 0.00 0.17 0.33 0.50 0.67 0.83	RAIN mm/hr 2.73 3.02 3.39 3.90 4.65 5.87	TIME hrs 1.00 1.17 1.33 1.50 1.67 1.83	RAIN mm/hr 8.29 16.48 55.13 19.39 11.11 8.08	' TIME ' hrs 2.00 2.17 2.33 2.50 2.67 2.83	RAIN mm/hr 6.47 5.46 4.76 4.24 3.84 3.52	<pre>TIME hrs 3.00 3.17 3.33 3.50 3.67 3.83</pre>	RAIN mm/hr 3.26 3.04 2.85 2.69 2.55 2.42
CALIB STANDHYD (0011) ID= 1 DT= 5.0 min	Area Total I	(ha)= mp(%)=	0.46 6.00	Dir. Conn	.(%)=	6.00	
		TMPERVTOU	S PE	RVIOUS (i)		
Surface Area	(ha)=	0.03		0.43	/		
Dep. Storage	(mm) =	1.00		1.50			
Average Slope	(%)=	1.00		2.00			
Length	(m) =	55.38		40.00			
Mannings n	=	0.013		0.250			
NOTE: RAINF	ALL WAS T	RANSFORME	D TO	5.0 MIN.	TIME STE	Ρ.	
		TRΔ	NSEORME	D HVETOGR	ΔPH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	l' hrs	mm/hr	hrs	mm/hr
0.083	2.73	1.083	8.29	2.083	6.47 l	3.08	3.26
0.167	2.73	1.167	8.29	2.167	6.47	3.17	3.26
0.250	3.02	1.250	16.48	2.250	5.46	3.25	3.04
0.333	3.02	1.333	16.48	2.333	5.46	3.33	3.04
0.417	3.39	1.417	55.13	2.417	4.76	3.42	2.85
0.500	3.39	1.500	55.13	2.500	4.76	3.50	2.85
0.583	3.90	1.583	19.39	2.583	4.24	3.58	2.69
0.667	3.90	1.667	19.39	2.667	4.24	3.67	2.69
0.750	4.65	1.750	11.11	2.750	3.84	3.75	2.55
0.833	4.65	1.833	11.11	2.833	3.84	3.83	2.55
0.917	5.87	1.917	8.08	2.917	3.52	3.92	2.42
1.000	5.87	2.000	8.08	3.000	3.52	4.00	2.42
Max Eff Inten (m	n/hr)=	55,13		8.46			
	(min)	5,00		25.00			
0101	()	2.00					

Storage Coeff.	(min)=	2.27 (ii)	21.23 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	25.00	
Unit Hyd. peak	(cms)=	0.30	0.05	
				TOTALS
PEAK FLOW	(cms)=	0.00	0.01	0.007 (iii)
TIME TO PEAK	(hrs)=	1.50	1.83	1.83
RUNOFF VOLUME	(mm)=	30.20	7.27	8.62
TOTAL RAINFALL	(mm)=	31.20	31.20	31.20
RUNOFF COEFFICIE	ENT =	0.97	0.23	0.28

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA.

> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 73.5 Ia = Dep. Storage (Above)
> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB STANDHYD (0009) Area (ha)= 1.06 |ID= 1 DT= 5.0 min | Total Imp(%)= 6.00 Dir. Conn.(%)= 6.00 -----IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.06 1.00 (mm)= Dep. Storage 1.00 1.50 Average Slope (%)= 1.00 2.00

Length	(m)=	84.06	40.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

RAIN | RAIN |' TIME TIME TIME RAIN TIME RAIN mm/hr | hrs mm/hr |' hrs mm/hr | hrs hrs mm/hr 0.083 2.73 | 1.083 8.29 | 2.083 6.47 | 3.08 3.26 8.29 | 2.167 0.167 2.73 | 1.167 6.47 | 3.17 3.26 3.02 | 1.250 16.48 | 2.250 5.46 3.25 0.250 3.04 5.46 | 0.333 3.02 | 1.333 16.48 | 2.333 3.33 3.04 0.417 3.39 | 1.417 55.13 | 2.417 4.76 3.42 2.85 0.500 3.39 | 1.500 55.13 | 2.500 4.76 3.50 2.85 3.90 | 1.583 4.24 | 0.583 19.39 | 2.583 3.58 2.69 3.90 | 1.667 19.39 | 2.667 4.24 | 0.667 3.67 2.69 0.750 4.65 | 1.750 11.11 | 2.750 3.84 | 3.75 2.55 4.65 | 1.833 3.84 | 0.833 11.11 | 2.833 3.83 2.55 0.917 5.87 | 1.917 8.08 | 2.917 3.52 3.92 2.42

---- TRANSFORMED HYETOGRAPH ----

	1.000	5.87	2.000	8.08	3.000	3.52	4.00	2.42
Max.Eff.In Storage Co Unit Hyd. Unit Hyd.	ten.(mm/h over (mi eff. (mi Tpeak (mi peak (cm	r)= n) n)= n)= s)=	55.13 5.00 2.92 5.00 0.28	(ii)	8.46 25.00 21.88 (ii) 25.00 0.05	*TOTAL	с*	
PEAK FLOW TIME TO PE RUNOFF VOL TOTAL RAIN RUNOFF COE	(cm AK (hr JME (m FALL (m FFICIENT	s)= s)= m)= = =	0.01 1.50 30.20 31.20 0.97	3	0.01 1.83 7.27 31.20 0.23	*101AL 0.01 1.8 8.6 31.2 0.2	.5* .5 (iii) 33 53 20 28	
***** WARNING: ***** WARNING:F Y	STORAGE C OR AREAS OU SHOULD	OEFF. IS WITH IMP CONSIDE	5 SMALLE PERVIOUS ER SPLIT	ER THAN ⁻ 5 RATIOS FTING THE	TIME STEP! BELOW 20% E AREA.			
(i) CN P CN* (ii) TIME THAN (iii) PEAK	ROCEDURE = 73.5 STEP (DT THE STOR FLOW DOE	SELECTEI Ia =) SHOULI AGE COEI S NOT IN	D FOR PE = Dep. S D BE SMA FFICIENT NCLUDE E	ERVIOUS I Storage ALLER OR G. BASEFLOW	LOSSES: (Above) EQUAL IF ANY.			
RESERVOIR(0	 010) = 1	OVERFLO	DW IS OF	F				
DT= 5.0 min	-	OUTFLOI (cms) 0.0004 0.0014 0.0015 0.0015 0.0018 0.0338 0.0484 0.0594 0.0685	N ST((ha) 0. 1 0. 5 0. 7 0. 3 0. 3 0. 4 0. 7 0.	DRAGE a.m.) .0000 .0009 .0018 .0026 .0039 .0054 .0069 .0086 .0103	OUTFLOW (cms) 0.0769 0.0842 0.0910 0.0974 0.1033 0.1089 0.1143 0.1194 0.0000	STORA (ha.m 0.0 0.0 0.0 0.0 0.0 0.0 0.0	AGE 1.) 2120 2136 2152 2165 2179 2188 2197 2206 2000	
INFLOW : ID= OUTFLOW: ID=	2 (000 1 (001	9) 0)	AREA (ha) 1.060 1.060	QPEAK (cms) 0.02 0.00	TPEAK (hrs) 15 1.8 39 2.5	R. (m 33 50	V. m) 8.63 8.49	
	PEAK TIME MAXIM	FLOW SHIFT OI UM STOP	REDUCT F PEAK F RAGE L	FION [Qou FLOW JSED	ut/Qin](%): (min): (ha.m.):	= 58.83 = 40.00 = 0.0042	2	

ADD HYD (0012) 1 + 2 = 3 ID1= 1 (00 + ID2= 2 (00	AF († 10): 1. 11): 0:	REA QP na) (ci .06 0.0 .46 0.0	EAK TF ms) († 09 2. 07 1. =======	PEAK irs) .50 .83	R.V. (mm) 8.49 8.62		
ID = 3 (00	12): 1	.52 0.0	13 2.	.42	8.53		
NOTE: PEAK FLO	WS DO NOT	INCLUDE B	ASEFLOWS	IF ANY.			
RESERVOIR(0013) IN= 2> OUT= 1 DT= 5.0 min	OVERFI OUTFLC	LOW IS OF DW STO	F RAGE	OUTFLC) W	STORAGE	
	(cms)) (ha	.m.)	(cms)		(ha.m.)	
	0.000	00 0.	0000	0.077	2	0.0133	
	0.001	15 0.	0010	0.084	6	0.0152	
	0.001	17 0.	0020	0.091	.4	0.0169	
	0.001	19 0.	0029	0.097	7	0.0184	
	0.002	20 0.	0043	0.103	37	0.0199	
	0.034	40 0.	0060	0.109	93	0.0209	
	0.048	86 0.	0077	0.114	.7	0.0219	
	0.059	97 0.	0096	0.119	8	0.0229	
	0.069	90 0.	0114	0.000	00	0.0000	
TNELOW : TD= 2 (0012)	AREA (ha) 1.520	QPEAK (cms) 0.013	TPEA (hrs 3 2	K 5) 2.42	R.V. (mm) 8.53	
OUTFLOW: ID= 1 (0013)	1.520	0.008	3 3	3.17	8.43	
	,				•=-		
P T M	EAK FLOW IME SHIFT (AXIMUM ST(REDUCT DF PEAK F DRAGE U	ION [Qout LOW SED	/Qin](% (min (ha.m.	6)= 63 1)= 45)= 0	.22 .00 .0046	
CALIB STANDHYD (0015) ID= 1 DT= 5.0 min	Area Total Ir	(ha)= np(%)= 4	0.37 7.00 Di	ir. Conn	1.(%)=	30.00	
_	1			/IOUS (i)		
Surface Area	(ha)=	0.17	L.N.),20	,		
Dep. Storage	(mm)=	1.00	1	L.50			
Average Slope	(%)=	1.00	2	2.00			
Length	(m)=	49.60	5	5.00			
Mannings n	=	0.013	0.	250			
NOTE: RAIN	FALL WAS TH	RANSFORME	D TO 5.	.0 MIN.	TIME	STEP.	

		TRA	NSFORME	D HYETOGRA	NPH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	s mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	3 2.73	1.083	8.29	2.083	6.47	3.08	3.26
0.167	2.73	1.167	8.29	2.167	6.47	3.17	3.26
0.250	3.02	1.250	16.48	2.250	5.46	3.25	3.04
0.333	3.02	1.333	16.48	2.333	5.46	3.33	3.04
0.417	7 3.39	1.417	55.13	2.417	4.76	3.42	2.85
0.500	3.39	1.500	55.13	2.500	4.76	3.50	2.85
0.583	3.90	1.583	19.39	2.583	4.24	3.58	2.69
0.667	7 3.90	1.667	19.39	2.667	4.24	3.67	2.69
0.750	9 4.65	1.750	11.11	2.750	3.84	3.75	2.55
0.833	3 4.65	1.833	11.11	2.833	3.84	3.83	2.55
0.917	5.87	1.917	8.08	2.917	3.52	3.92	2.42
1.000	5.87	2.000	8.08	3.000	3.52	4.00	2.42
Max Eff Inten (m	m/hr)=	55 12		42.66			
over	(min)	5 00		42.00 10 00			
Storage Coeff	$(\min) =$	2 13	(ii)	5 36 (ii)			
Unit Hyd Theak	$(\min) =$	5 00	(11)	10 00 (11)			
Unit Hyd neak	(cms) =	0 31		0.00 0.16			
onie nyu. peuk	((()))	0.51		0.10	*тот	ΔΙ ς*	
PEAK ELOW	(cms) =	0.02		0.02	0	034 (iii))
TTME TO PEAK	(hrs) =	1.50		1.58	1	.50	/
	(mm)=	30.20		17.98	21	. 64	
	(mm) =	31.20		31.20	31		
		0.97		0.58	6	1.69	
		0.57		0.50			
***** WARNING: STORAG	GE COEFF. 3	IS SMALLE	R THAN	TIME STEP!			
			DUTOUC				
(1) CN PROCEDU	JRE SELECTE	D FOR PE	RVIOUS	LUSSES:			
		= Dep. S	torage	(Above)			
(11) TIME STEP	(DI) SHOUL		LLER OR	EQUAL			
IHAN IHE :	DOLC NOT		• •				
(III) PEAK FLOW	DUES NUT 1		ASEFLOW	IF ANY.			
RESERVOIR(0016)	OVERFL	LOW IS OF	F				
IN= 2> OUT= 1							
DT= 5.0 min	OUTFLO	DW STC	RAGE	OUTFLOW	I STC	ORAGE	
	(cms)) (ha	ı.m.)	(cms)	(ha	a.m.)	
**** WARNING : F	IRST OUTFL	LOW IS NO	OT ZERO.				
	0.001	LØ Ø.	0000	0.0425	; e	.0073	
	0.001	LØ Ø.	0008	0.0454	l e	.0083	
	0.016	56 0 .	0016	0.0481	. e	.0093	
	0.023	31 0.	0024	0.0507	'e	0.0103	
	0.028	31 0.	0033	0.0531	. e	0.0112	

	0.032 0.036 0.039	23 0. 51 0. 94 0.	0043 0053 0063	0.055 0.057 0.059	5 6 7 6 9 6).0120).0128).0136	
INFLOW : ID= 2 (OUTFLOW: ID= 1 (0015) 0016)	AREA (ha) 0.369 0.369	QPEAK (cms) 0.0 0.0	TPEA (hrs 34 1 20 1	K) .50 .67	R.V. (mm) 21.64 21.65	
PE TJ MA	AK FLOW MESHIFT C XXIMUM STC	REDUCT DF PEAK F DRAGE L	ION [Qo LOW JSED	ut/Qin](% (min (ha.m.)= 58.93)= 10.00)= 0.00	3))20	
CALIB STANDHYD (0014) ID= 1 DT= 5.0 min	Area Total In	(ha)= np(%)= 1	1.79 7.00	Dir. Conn	.(%)= 1	10.00	
	1				<u>۱</u>		
Surface Area	(ha)=	0 30	73 FL	1 48)		
Den Storage	(mm)=	1 00		1 50			
Average Slone	(%) =	1 00		2 99			
Length	(m) =	109 21		40 00			
Mannings n	=	0.013		0.250			
NOTE: RAINF	ALL WAS TR	ANSFORME	D TO	5.0 MIN.	TIME STE	EP.	
		три					
ттме		IKA		D HYEIUGK I' TTME	АРН раты	I ттмс	
hrs	: mm/hr	hrs	mm/hr	l' hrs	mm/hr	hrs	mm/hr
0.083	3 2.73	1.083	8.29	2.083	6.47	3.08	3.26
0.167	2.73	1.167	8.29	2.167	6.47	3.17	3.26
0.250	3.02	1.250	16.48	2.250	5.46	3.25	3.04
0.333	3.02	1.333	16.48	2.333	5.46	3.33	3.04
0.417	7 3.39	1.417	55.13	2.417	4.76	3.42	2.85
0.500	3.39	1.500	55.13	2.500	4.76	3.50	2.85
0.583	3.90	1.583	19.39	2.583	4.24	3.58	2.69
0.667	3.90	1.667	19.39	2.667	4.24	3.67	2.69
0.750	9 4.65	1.750	11.11	2.750	3.84	3.75	2.55
0.833	4.65	1.833	11.11	2.833	3.84	3.83	2.55
0.91/	ן / 5.8/ ג ב ס ד	1.91/	8.08	2.91/	3.52	3.92	2.42
1.000	0 0.0/	2.000	0.00	טטש.כן	5.52	4.00	2.42

<pre>Max.Eff.Inten.(mm/hr)=</pre>	55.13	10.58
over (min)	5.00	25.00
Storage Coeff. (min)=	3.42 (ii)	20.75 (ii)
Unit Hyd. Tpeak (min)=	5.00	25.00
Unit Hyd. peak (cms)=	0.26	0.05

				TOTALS
PEAK FLOW	(cms)=	0.03	0.03	0.034 (iii)
TIME TO PEAK	(hrs)=	1.50	1.83	1.50
RUNOFF VOLUME	(mm)=	30.20	8.30	10.48
TOTAL RAINFALL	(mm)=	31.20	31.20	31.20
RUNOFF COEFFICI	ENT =	0.97	0.27	0.34

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA.

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 75.2 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0017) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 1 + 2 = 3 -----ID1= 1 (0013): 1.52 0.008 3.17 8.43 + ID2= 2 (0014): 1.79 0.034 1.50 10.48 _____ ID = 3 (0017): 3.31 0.035 1.50 9.54 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ADD HYD (0017) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 3 + 2 = 1 3.31 0.035 ID1= 3 (0017): 9.54 1.50 + ID2= 2 (0016): 0.37 0.020 1.67 21.65 ------ID = 1 (0017): 3.68 0.051 1.50 10.75 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ | CALIB STANDHYD (0018) | Area (ha)= 0.49 |ID= 1 DT= 5.0 min | Total Imp(%)= 28.00 Dir. Conn.(%)= 20.00 ------IMPERVIOUS PERVIOUS (i) (ha)= 0.14 (mm)= 1.00 Surface Area 0.35 Dep. Storage 1.50

Average Slope	(%)=	1.00	2.00
Length	(m)=	57.15	40.00
Mannings n	=	0.013	0.250

		TRA	ANSFORMEI	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	2.73	1.083	8.29	2.083	6.47	3.08	3.26
0.167	2.73	1.167	8.29	2.167	6.47	3.17	3.26
0.250	3.02	1.250	16.48	2.250	5.46	3.25	3.04
0.333	3.02	1.333	16.48	2.333	5.46	3.33	3.04
0.417	3.39	1.417	55.13	2.417	4.76	3.42	2.85
0.500	3.39	1.500	55.13	2.500	4.76	3.50	2.85
0.583	3.90	1.583	19.39	2.583	4.24	3.58	2.69
0.667	3.90	1.667	19.39	2.667	4.24	3.67	2.69
0.750	4.65	1.750	11.11	2.750	3.84	3.75	2.55
0.833	4.65	1.833	11.11	2.833	3.84	3.83	2.55
0.917	5.87	1.917	8.08	2.917	3.52	3.92	2.42
1.000	5.87	2.000	8.08	3.000	3.52	4.00	2.42
		•		•	•		

Max.Eff.Inten.(r over	nm/hr)= (min)	55.13 5.00	15.62 20.00	
Storage Coeff.	(min)=	2.32 (ii)	17.15 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	20.00	
Unit Hyd. peak	(cms)=	0.30	0.06	
				TOTALS
PEAK FLOW	(cms)=	0.01	0.01	0.019 (iii)
TIME TO PEAK	(hrs)=	1.50	1.75	1.50
RUNOFF VOLUME	(mm)=	30.20	10.54	14.45
TOTAL RAINFALL	(mm)=	31.20	31.20	31.20
RUNOFF COEFFICIE	ENT =	0.97	0.34	0.46

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA.

 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 80.7 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | | STANDHYD (0007)| Area (ha)= 0.46 |ID= 1 DT= 5.0 min | Total Imp(%)= 31.00 Dir. Conn.(%)= 25.00

		IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha)=	0.14	0.32
Dep. Storage	(mm)=	1.00	1.50
Average Slope	(%)=	1.00	2.00
Length	(m)=	55.56	5.00
Mannings n	=	0.013	0.250

		TRA	ANSFORME	D HYETOGRA	РН		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	s mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	2.73	1.083	8.29	2.083	6.47	3.08	3.26
0.167	2.73	1.167	8.29	2.167	6.47	3.17	3.26
0.250	3.02	1.250	16.48	2.250	5.46	3.25	3.04
0.333	3.02	1.333	16.48	2.333	5.46	3.33	3.04
0.417	3.39	1.417	55.13	2.417	4.76	3.42	2.85
0.500	3.39	1.500	55.13	2.500	4.76	3.50	2.85
0.583	3.90	1.583	19.39	2.583	4.24	3.58	2.69
0.667	3.90	1.667	19.39	2.667	4.24	3.67	2.69
0.750	4.65	1.750	11.11	2.750	3.84	3.75	2.55
0.833	4.65	1.833	11.11	2.833	3.84	3.83	2.55
0.917	5.87	1.917	8.08	2.917	3.52	3.92	2.42
1.000	5.87	2.000	8.08	3.000	3.52	4.00	2.42
Max.Eff.Inten.(m	ım/hr)=	55.13		31.32			
over	(min)	5.00		10.00			
Storage Coeff.	(min)=	2.28	(ii)	6.14 (ii)			
Unit Hyd. Tpeak	(min)=	5.00		10.00			
Unit Hyd. peak	(cms)=	0.30		0.15			
					T0T	ALS	
PEAK FLOW	(cms)=	0.02		0.02	0.	037 (iii)	
TIME TO PEAK	(hrs)=	1.50		1.58	1	.50	
RUNOFF VOLUME	(mm)=	30.20		16.36	19	.81	
TOTAL RAINFALL	(mm)=	31.20		31.20	31	.20	
RUNOFF COEFFICIE	NT =	0.97		0.52	0	.64	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i)	CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
	CN* = 90.5 Ia = Dep. Storage (Above)
(ii)	TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
	THAN THE STORAGE COEFFICIENT.
(iii)	PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB

STANDHYD (0001)	Area	(ha)=	1.09		
ID= 1 DT= 5.0 min	Total	Imp(%)=	5.00	Dir. Conn.(%)=	5.00
		IMPERVIOU	IS	PERVIOUS (i)	
Surface Area	(ha)=	0.05		1.04	
Dep. Storage	(mm)=	1.00		1.50	
Average Slope	(%)=	1.00		2.00	
Length	(m)=	85.24		40.00	
Mannings n	=	0.013		0.250	

---- TRANSFORMED HYETOGRAPH ----

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	2.73	1.083	8.29	2.083	6.47	3.08	3.26
0.167	2.73	1.167	8.29	2.167	6.47	3.17	3.26
0.250	3.02	1.250	16.48	2.250	5.46	3.25	3.04
0.333	3.02	1.333	16.48	2.333	5.46	3.33	3.04
0.417	3.39	1.417	55.13	2.417	4.76	3.42	2.85
0.500	3.39	1.500	55.13	2.500	4.76	3.50	2.85
0.583	3.90	1.583	19.39	2.583	4.24	3.58	2.69
0.667	3.90	1.667	19.39	2.667	4.24	3.67	2.69
0.750	4.65	1.750	11.11	2.750	3.84	3.75	2.55
0.833	4.65	1.833	11.11	2.833	3.84	3.83	2.55
0.917	5.87	1.917	8.08	2.917	3.52	3.92	2.42
1.000	5.87	2.000	8.08	3.000	3.52	4.00	2.42

Max.Eff.Inten.(mm/	/hr)=	55.13	8.46	
over (m	min)	5.00	25.00	
Storage Coeff. (m	min)=	2.95 (ii)	21.90 (ii)	
Unit Hyd. Tpeak (m	min)=	5.00	25.00	
Unit Hyd. peak (c	cms)=	0.28	0.05	
				TOTALS
PEAK FLOW (c	cms)=	0.01	0.01	0.016 (iii)
TIME TO PEAK (h	nrs)=	1.50	1.83	1.83
RUNOFF VOLUME ((mm)=	30.20	7.27	8.41
TOTAL RAINFALL ((mm)=	31.20	31.20	31.20
RUNOFF COEFFICIENT	Г =	0.97	0.23	0.27

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA.

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 73.5 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOTR(0002)		TS OFF			
TN - 2 N OUT - 1	OVENILOW	13 011			
DT - 50 min		STORAGE		STORAGE	
	(cms)	(ham)		(ham)	
		(11a.111.) 0.0000		(110.11.)	
	0.0000	0.0000		0.0152	
	0.0015	0.0010		0.0150	
	0.0017	0.0019		0.0107	
	0.0019	0.0029		0.0182	
	0.0020	0.0042		0.0197	
	0.0257	0.0059		0.0207	
	0.0349	0.0076		0.0216	
	0.0421	0.0094	0.0822	0.0226	
	0.0482	0.0113	0.0000	0.0000	
	4.0		TDEAK	D.)/	
	AK (h	EA QPEAK	IPEAK (hea)	K.V.	
	(1)		(nrs)	(mm)	
INFLOW : ID= 2 (0001) 1.	090 0.0		8.41	
OUTFLOW: ID= I (0002) 1.	090 0.0	08 2.75	8.26	
			(0, 1, 0)	40 56	
P	EAK FLOW K	EDUCTION LOO	ut/Qin](%) = 4	48.56	
1	IME SHIFT OF P	EAK FLOW	(min)=	55.00	
M	AXIMUM STURAG	E USED	(na.m.)=	0.0046	
	Anos (ba)- 1 15			
TD = 1 DT = 5 0 min	Total Imp/9	() = 1.13	Din Conn (%)- 5.00	
		5)- 5.00)- 5.00	
	тмре		RVIOUS (;)		
Sunface Anos		A A6	1 00		
	(11a) = (mm) =	1.00	1.09		
Dep. Storage	(mm)= (%)-	1.00	1.50		
Average Slope	(//)= (//)		2.00		
Length	(m)= 8	/.56	40.00		
Mannings n	= 0	.013	0.250		
NOTE: RAIN	FALL WAS TRANS	FORMED TO	5.0 MIN. IIM	E STEP.	
		TRANCEORAE			
		- TRANSFORME	D HYETOGRAPH		
TIM	E RAIN T	- TRANSFORME	D HYETOGRAPH ' TIME	RAIN TIME	RAIN
TIM	E RAIN T s mm/hr	- TRANSFORME IME RAIN hrs mm/hr	D HYETOGRAPH ' TIME ' hrs m	RAIN TIME m/hr hrs	RAIN mm/hr
TIM hr 0.08	E RAIN T s mm/hr 3 2.73 1.	- TRANSFORME IME RAIN hrs mm/hr 083 8.29	D HYETOGRAPH ' TIME ' hrs m 2.083 6	RAIN TIME m/hr hrs .47 3.08	RAIN mm/hr 3.26

16.48 | 2.250

16.48 | 2.333

55.13 | 2.417

5.46 | 3.25

5.46 | 3.33

4.76 | 3.42

3.04

3.04

2.85

0.250

0.333

0.417

3.02 | 1.250

3.02 | 1.333

3.39 | 1.417

0.500 0.583 0.667 0.750 0.833 0.917 1.000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500 55.13 583 19.39 567 19.39 567 11.11 333 11.11 917 8.08 900 8.08	2.500 2.583 2.667 2.750 2.833 2.917 3.000	4.76 4.24 3.84 3.84 3.52 3.52	3.50 3.58 3.67 3.75 3.83 3.92 4.00	2.85 2.69 2.69 2.55 2.55 2.42 2.42
Max.Eff.Inten.(mm over (Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (PEAK FLOW (TIME TO PEAK (RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIEN	<pre>/hr)= 59 min)= 9 min)= 9</pre>	5.13 5.00 2.99 (ii) 5.00 0.28 0.01 1.50 0.20 1.20 0.97	8.46 25.00 21.95 (ii) 25.00 0.05 0.01 1.83 7.27 31.20 0.23	*TOTAL 0.01 1.8 8.4 31.2 0.2	.S* .6 (iii) 33 11 20 27	
***** WARNING: STORAGE ***** WARNING:FOR AREA YOU SHOU (i) CN PROCEDUR CN* = 73 (ii) TIME STEP (THAN THE ST (iii) PEAK FLOW D	COEFF. IS SM S WITH IMPERV LD CONSIDER S E SELECTED FC .5 Ia = De DT) SHOULD BH ORAGE COEFFIC OES NOT INCLU	MALLER THAN /IOUS RATIO SPLITTING T DR PERVIOUS ep. Storage E SMALLER O CIENT. JDE BASEFLO	TIME STEP! S BELOW 20% HE AREA. LOSSES: (Above) R EQUAL W IF ANY.	6		
ADD HYD (0004) 1 + 2 = 3 ID1= 1 (0002 + ID2= 2 (0003 ===== ID = 3 (0004 NOTE: PEAK FLOWS	AREA (ha)): 1.09): 1.15 ========): 2.24 DO NOT INCL	QPEAK (cms) 0.008 0.016 ========= 0.018 JDE BASEFLO	TPEAK (hrs) 2.75 & 1.83 & 1.83 & 1.83 &	R.V. (mm) 3.26 3.41 ===== 3.34		
RESERVOIR(0005) IN= 2> OUT= 1 DT= 5.0 min	OVERFLOW 1 OUTFLOW (cms) 0.0000 0.0029	IS OFF STORAGE (ha.m.) 0.0000 0.0019	OUTFLOV (cms) 0.0617 0.0674	N STORA (ha.m 7 0.0 1 0.0	GE 1.) 0253 0289	

_

-

0.0032 0.0036 0.0037 0.0726 0.0321 0.0056 0.0775 0.0350 0.0039 0.0299 0.0821 0.0082 0.0380 0.0113 0.0865 0.0398 0.0147 | 0.0906 0.0182 | 0.0946 0.0404 0.0417 0.0486 0.0435 0.0555 0.0218 0.0000 0.0000 AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) INFLOW : ID= 2 (0004) 2.240 0.018 1.83 8.34 OUTFLOW: ID= 1 (0005) 2.240 0.009 3.83 8.27 PEAK FLOW REDUCTION [Qout/Qin](%) = 48.12 TIME SHIFT OF PEAK FLOW (min)=120.00 (ha.m.)= 0.0088 MAXIMUM STORAGE USED _____ | CALIB STANDHYD (0006)0006ID= 1 DT= 5.0 minTotal Imp(%)=13.00Dir. Conn.(%)=13.00 -----IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.25 1.64 (mm)= mm)= (%)= 1.00 (m)= 112.22 0.013 1.50 Dep. Storage Average Slope 2.00 (%)= Length 40.00 = 0.250 Mannings n NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. _ _ .

1	FRANSFORMED	HYETOGRAPH	

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	2.73	1.083	8.29	2.083	6.47	3.08	3.26
0.167	2.73	1.167	8.29	2.167	6.47	3.17	3.26
0.250	3.02	1.250	16.48	2.250	5.46	3.25	3.04
0.333	3.02	1.333	16.48	2.333	5.46	3.33	3.04
0.417	3.39	1.417	55.13	2.417	4.76	3.42	2.85
0.500	3.39	1.500	55.13	2.500	4.76	3.50	2.85
0.583	3.90	1.583	19.39	2.583	4.24	3.58	2.69
0.667	3.90	1.667	19.39	2.667	4.24	3.67	2.69
0.750	4.65	1.750	11.11	2.750	3.84	3.75	2.55
0.833	4.65	1.833	11.11	2.833	3.84	3.83	2.55
0.917	5.87	1.917	8.08	2.917	3.52	3.92	2.42
1.000	5.87	2.000	8.08	3.000	3.52	4.00	2.42

Max.Eff.Inten.(mm/	'hr)= 55.13	
--------------------	-------------	--

8.93

over (min)	5.00	25.00	
Storage Coeff. (min)=	3.47 (ii)) 22.03 (ii)	
Unit Hyd. Tpeak (min)=	5.00	25.00	
Unit Hyd. peak (cms)=	0.26	0.05	
		*	TOTALS*
PEAK FLOW (cms)=	0.04	0.02	0.043 (iii)
TIME TO PEAK (hrs)=	1.50	1.83	1.50
RUNOFF VOLUME (mm)=	30.20	7.64	10.57
TOTAL RAINFALL (mm)=	31.20	31.20	31.20
RUNOFF COEFFICIENT =	0.97	0.25	0.34
***** WARNING: STORAGE COEFF ***** WARNING:FOR AREAS WITH YOU SHOULD CON	. IS SMALLER TH IMPERVIOUS RAT SIDER SPLITTING	HAN TIME STEP! TIOS BELOW 20% 5 THE AREA.	
(1) CN PROCEDURE SELE	CIED FOR PERVIC	JUS LOSSES:	
$CN^* = /4.8$	la = Dep. Stora	age (Above)	
(11) TIME STEP (DT) SH	OULD BE SMALLER	R OR EQUAL	
THAN THE STURAGE	CUEFFICIENI.		
(111) PEAK FLOW DUES NO	I INCLUDE BASER	-LOW IF ANY.	
ADD HYD (0008)			
1 + 2 = 3	AREA OPEAK	TPEAK R.V.	
	(ha) (cms)	(hrs) (mm)	
ID1= 1 (0005):	2.24 0.009	3.83 8.27	
+ ID2= 2 (0006):	1.89 0.043	1.50 10.57	
=======================================			
ID = 3 (0008):	4.13 0.045	1.50 9.32	
NOTE: PEAK FLOWS DO NO	T INCLUDE BASE	LOWS IF ANY.	
ADD HYD (0008)			
3 + 2 = 1	AREA OPEAK	TPEAK R.V.	
	(ha) (cms)	(hrs) (mm)	
TD1 = 3 (0008)	4.13 0.045	1.50 9.32	
+ ID2 = 2 (0007):	0.46 0.037	1.50 19.81	
=======================================	==================		
ID = 1 (0008):	4.59 0.081	1.50 10.38	
NOTE: PEAK FLOWS DO NO	T INCLUDE BASE	LOWS IF ANY.	
ADD HYD (0019)			
1 + 2 = 3	AREA QPEAK	TPEAK R.V.	

(ha) (cms) (hrs) (mm) 3.68 0.051 1.50 10.75 -----ID1= 1 (0017): 0.49 0.019 + ID2= 2 (0018): 1.50 14.45 _____ ID = 3 (0019): 4.17 0.069 1.50 11.19 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ADD HYD (0019) | 3 + 2 = 1 | AREAQPEAKTPEAKR.V.(ha)(cms)(hrs)(mm) -----ID1= 3 (0019): 4.17 0.069 1.50 11.19 + ID2= 2 (0008): 4.59 0.081 1.50 10.38 ------ID = 1 (0019): 8.76 0.151 1.50 10.76 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____

_____ SSSSS U U A (v 6.2.2015) V V Ι L V V Τ SS U U ΑΑ _____ V V Ι SS U U AAAAA L V V Ι SS A L U UΑ VV Ι SSSSS UUUUU A A LLLLL ΤΤΤΤΤ ΤΤΤΤΤ Η 000 H Y Y M М 000 ТΜ 0 0 Т Н Н ΥY MM MM O Т 0 т 0 0 Т Н Н Υ М M O 0 000 Т Т Υ М Μ 000 Н Н Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved. ***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Output filename: C:\Users\jangsoo.lee\AppData\Local\Civica\VH5\72fe312b-9676-436f-b6d3-c40a805b884b\3 26003c3-6c15-43be-adc7-c9b77375e756 Summary filename: C:\Users\jangsoo.lee\AppData\Local\Civica\VH5\72fe312b-9676-436f-b6d3-c40a805b884b\3 26003c3-6c15-43be-adc7-c9b77375e756\ DATE: 01/26/2024 TIME: 01:25:56 USER: COMMENTS: _____ ------** ** SIMULATION : 5yr-3hr 10min Chicago CHICAGO STORM IDF curve parameters: A=1593.000 | Ptotal= 47.25 mm | B= 11.000 C= 0.879

	used in:	INTENSITY =	= A / (t +	B)^C	
	Duration o Storm time Time to pe	of storm = e step = 1 eak ratio =	3.00 hrs 10.00 min 0.38		
TIME hrs 0.00 0.17 0.33 0.50 0.67	RAIN 1 mm/hr 3.21 6 3.97 1 5.20 1 7.43 1 12.54 1	TIME RAIN hrs mm/hr 0.83 32.44 1.00 109.68 1.17 39.67 1.33 19.15 1.50 12.05	' TIME ' hrs 1.67 1.83 2.00 2.17 2.33	RAIN TIME mm/hr hrs 8.62 2.50 6.65 2.67 5.38 2.83 4.51 3.88	RAIN mm/hr 3.39 3.02 2.72
CALIB STANDHYD (0011) ID= 1 DT= 5.0 min	Area (ha Total Imp(%	a)= 0.46 6)= 6.00	Dir. Conn.(%)= 6.00	
Surface Area Dep. Storage Average Slope Length Mannings n NOTE: RAINFA	IMPE (ha)= (mm)= (%)= (m)= 5 = 6	ERVIOUS PE 0.03 1.00 1.00 55.38 0.013 5FORMED TO	ERVIOUS (i) 0.43 1.50 2.00 40.00 0.250 5.0 MIN. TI	ME STEP.	
TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750	RAIN 1 mm/hr 3.21 0. 3.21 0. 3.97 1. 3.97 1. 5.20 1. 5.20 1. 5.20 1. 7.43 1. 7.43 1. 12.54 1.	TRANSFORME TIME RAIN hrs mm/hr 833 12.54 917 32.44 000 32.44 000 32.44 083 109.68 167 109.68 250 39.67 333 39.67 417 19.15 500 19.15	ED HYETOGRAP ' TIME ' hrs 1.583 1 1.667 1 1.750 1.833 1.917 2.000 2.083 2.167 2.250	PH RAIN TIME mm/hr hrs 2.05 2.33 2.05 2.42 8.62 2.50 8.62 2.50 8.65 2.67 6.65 2.75 5.38 2.83 5.38 2.92 4.51 3.00	RAIN mm/hr 4.51 3.88 3.88 3.39 3.39 3.02 3.02 2.72 2.72
Max.Eff.Inten.(mm over (Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (<pre>n/hr)= 10 min) min)= min)= cms)=</pre>	09.68 5.00 1.73 (ii) 5.00 0.32	27.73 15.00 13.52 (ii) 15.00 0.08	*TOTALS*	

	PEAK FLOW TIME TO PEAK	(cms)= (hrs)=	0.01 1.17		0.02 1.33	0.	.026 (iii) L.33)
	RUNOFF VOLUME	(mm)=	46.25		15.24	17	7.09	
	TOTAL RAINFAL	_ (mm)=	47.25		47.25	47	7.25	
	RUNOFF COEFFI	CIENT =	0.98		0.32	e	9.36	
**** ****	* WARNING: STO * WARNING:FOR YOU	RAGE COEFF AREAS WITH SHOULD CON	. IS SMALL IMPERVIOU SIDER SPLI	ER THAN S RATIOS TTING TH	TIME STEF 5 BELOW 20 HE AREA.	9 ! 9%		
	<pre>(i) CN PROC CN* = (ii) TIME ST THAN TH (iii) PEAK FL</pre>	EDURE SELE 73.5 EP (DT) SH E STORAGE DW DOES NO	CTED FOR P Ia = Dep. OULD BE SM COEFFICIEN T INCLUDE	ERVIOUS Storage ALLER OF T. BASEFLOV	LOSSES: (Above) R EQUAL N IF ANY.			
CAI ST/ TD=	LIB ANDHYD (0009 1 DT= 5.0 min) Area Total	(ha)= Tmp(%)=	1.06	Dir. Conr	n. (%)=	6.00	
			Tub())-	0.00		• (////-	0.00	
			IMPERVIO	US PE	ERVIOUS (i)		
	Surface Area	(ha)=	0.06		1.00			
	Dep. Storage	(mm)=	1.00		1.50			
	Average Slope	(%)=	1.00		2.00			
	Length	(m)=	84.06		40.00			
	Mannings n	=	0.013		0.250			
	NOTE: RA	INFALL WAS	TRANSFORM	ED TO	5.0 MIN.	TIME STE	EP.	
			TR	ANSFORME	ED HYETOGR	APH	-	
	Т	IME RAI	N TIME	RAIN	' TIME	RAIN	TIME	RAIN
		nrs mm/h	r hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
	0.	3. 2	1 0.833	12.54	1.583	12.05	2.33	4.51
	0.	167 3.2	1 0.917	32.44	1.667	12.05	2.42	3.88
	0.	250 3.9	7 1.000	32.44	1.750	8.62	2.50	3.88
	0.	333 3.9	7 1.083	109.68	1.833	8.62	2.58	3.39
	0.	417 5.2	0 1.167	109.68	1.917	6.65	2.67	3.39
	0.	500 5.2	0 1.250	39.67	2.000	6.65	2.75	3.02
	0.	583 7.4	3 1.333	39.67	2.083	5.38	2.83	3.02
	0.	567 7.4	3 1.417	19.15	2.167	5.38	2.92	2.72
	0.	750 12.5	4 1.500	19.15	2.250	4.51	3.00	2.72
	Max Eff Inton	(mm/hr)-	109 68		27 73			
		er (min)	5.00		15.00			
	Storage Coeff	(min)=	2.22	(ii)	14.01 (ii)		
	Unit Hvd. Tpe	ak (min)=	5.00	、 <i>-</i> /	15.00	,		
	Unit Hyd. pea	(cms)=	0.30		0.08			
		•						

				TOTALS
PEAK FLOW	(cms)=	0.02	0.05	0.058 (iii)
TIME TO PEAK	(hrs)=	1.17	1.33	1.33
RUNOFF VOLUME	(mm)=	46.25	15.24	17.10
TOTAL RAINFALL	(mm)=	47.25	47.25	47.25
RUNOFF COEFFICI	ENT =	0.98	0.32	0.36

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING: FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA.

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 73.5 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 - THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

|--|

RESERVOIR(0010) IN= 2> OUT= 1	OVERFLOW I	S OFF		
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE
	(cms)	(ha.m.)	(cms)	(ha.m.)
	0.0000	0.0000	0.0769	0.0120
	0 0014	a aaaa	0 0842	0 0136
	0.0014	0.0005 0.0018	0.0042	0.0150
	0.0015	0.0010 0.0026	0.0010	0.0152
	0.0017	0.0020	0.0974	0.0105
	0.0010		0.1000	0.01/9
	0.0338		0.1089	0.0107
	0.0484	0.0069	0.1143	0.0197
	0.0594	0.0086	0.1194	0.0206
	0.0687	0.0103	0.0000	0.0000
	ARE	A QPEAK	TPEAK	R.V.
	(ha) (cms)	(hrs)	(mm)
$INFLOW$: $ID= 2$ (0°	009) 1.0	60 0.05	58 1.33	17.10
OUTFLOW: ID= 1 (0	010) 1.0	60 0.04	10 1.58	16.95
PEA	K FLOW RE	DUCTION [Qou	ut/Qin](%)= 69	9.83
TIM	E SHIFT OF PE	AK FLOW	(min) = 1!	5.00
MAX	IMUM STORAGE	USED	(ha.m.)= (0.0061
			. ,	

ADD HYD (0012)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.

	ANLA	QF LAK	IFLAN	N•V•
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0010):	1.06	0.040	1.58	16.95
+ ID2= 2 (0011):	0.46	0.026	1.33	17.09

ID = 3 (0012): 1.52 0.060 1.50 16.99

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

_____ | RESERVOIR(0013)| OVERFLOW IS OFF | IN= 2---> OUT= 1 | | DT= 5.0 min | OUTFLOW STORAGE OUTFLOW STORAGE (cms) (ha.m.) (cms) (ha.m.) 0.0000 0.0000 0.0772 0.0133 0.0015 0.0010 0.0846 0.0152 0.0017 0.0020 0.0914 0.0169 0.0019 0.0029 0.0977 0.0184 0.0020 0.0043 0.1037 0.0199 0.0340 0.0060 0.1093 0.0209 0.1147 0.0486 0.0077 0.0219 0.0597 0.0096 0.1198 0.0229 0.0690 0.0114 0.0000 0.0000 AREA **QPEAK** TPEAK R.V. (cms) (mm) (ha) (hrs) INFLOW : ID= 2 (0012) 0.060 1.50 16.99 1.520 OUTFLOW: ID= 1 (0013) 1.520 0.045 1.83 16.89 PEAK FLOW REDUCTION [Qout/Qin](%)= 75.01 TIME SHIFT OF PEAK FLOW (min)= 20.00 MAXIMUM STORAGE USED (ha.m.)= 0.0073 CALIB | STANDHYD (0015)| Area (ha)= 0.37 |ID= 1 DT= 5.0 min | Total Imp(%)= 47.00 Dir. Conn.(%)= 30.00 -----IMPERVIOUS PERVIOUS (i) Surface Area 0.20 (ha) =0.17 (mm)= 1.50 Dep. Storage 1.00 Average Slope (%)= 1.00 2.00 Length (m)= 49.60 5.00 0.013 Mannings n = 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAINTIMERAINTIMEmm/hrhrsmm/hr'hrsmm/hr TIME RAIN hrs mm/hr 0.083 3.21 | 0.833 12.54 | 1.583 12.05 | 2.33 4.51 0.167 3.21 | 0.917 32.44 | 1.667 12.05 | 2.42 3.88

0.250 3. 0.333 3. 0.417 5. 0.500 5. 0.583 7. 0.667 7. 0.750 12.	971.00032.44971.083109.68201.167109.68201.25039.67431.33339.67431.41719.15541.50019.15	1.750 8.6 1.833 8.6 1.917 6.6 2.000 6.6 2.083 5.3 2.167 5.3 2.250 4.5	52 2.50 3.88 52 2.58 3.39 55 2.67 3.39 55 2.75 3.02 68 2.83 3.02 68 2.92 2.72 51 3.00 2.72
<pre>Max.Eff.Inten.(mm/hr)=</pre>	109.68 10 5.00 1.62 (ii) 5.00 0.32 0.03 1.17 46.25 47.25 0.98	03.77 5.00 4.07 (ii) 5.00 0.24 * 0.06 1.17 32.08 47.25 0.68	TOTALS* 0.089 (iii) 1.17 36.32 47.25 0.77
<pre>***** WARNING: STORAGE COEF (i) CN PROCEDURE SEL CN* = 90.5 (ii) TIME STEP (DT) S THAN THE STORAGE (iii) PEAK FLOW DOES N</pre>	F. IS SMALLER THAN ECTED FOR PERVIOUS Ia = Dep. Storage HOULD BE SMALLER OR COEFFICIENT. OT INCLUDE BASEFLOW	IIME STEP! LOSSES: (Above) EQUAL IF ANY.	
RESERVOIR(0016) OV IN= 2> OUT= 1 DT= 5.0 min OU	ERFLOW IS OFF TFLOW STORAGE cms) (ha.m.)	OUTFLOW (cms)	STORAGE (ha.m.)
**** WARNING : FIRST C e e e e e e e e e e e e e e e e e e e	UTFLOW IS NOT ZERO. .0010 0.0000 .0166 0.0016 .0231 0.0024 .0281 0.0033 .0323 0.0043 .0361 0.0053 .0394 0.0063	<pre>0.0425 0.0454 0.0481 0.0507 0.0531 0.0555 0.0577 0.0599</pre>	0.0073 0.0083 0.0093 0.0103 0.0112 0.0120 0.0128 0.0136
INFLOW : ID= 2 (0015) OUTFLOW: ID= 1 (0016) ΡΕΔΚ Ε	AREA QPEAK (ha) (cms) 0.369 0.03 0.369 0.03	TPEAK (hrs) 89 1.17 35 1.33	R.V. (mm) 36.32 36.34

TIME SHI	FT OF PEAK	FLOW	(min)= 10.00
MAXIMUM	STORAGE	USED	(ha.m.)= 0.0051

CALIB Area (ha)= 1.79 STANDHYD (0014) |ID= 1 DT= 5.0 min | Total Imp(%)= 17.00 Dir. Conn.(%)= 10.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.30 1.48 Dep. Storage (mm)= 1.00 1.50 Average Slope (%)= 1.00 2.00 40.00 Length (m) =109.21 Mannings n = 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN |' TIME TIME RAIN | TIME RAIN TIME RAIN mm/hr |' hrs hrs mm/hr | hrs mm/hr | hrs mm/hr 0.083 12.54 | 1.583 12.05 3.21 0.833 2.33 4.51

0.33	3.97	1.083	109.68	1.833	8.62	2.58	3.39
0.41	7 5.20	1.167	109.68	1.917	6.65	2.67	3.39
0.50	0 5.20	1.250	39.67	2.000	6.65	2.75	3.02
0.583	3 7.43	1.333	39.67	2.083	5.38	2.83	3.02
0.66	7 7.43	1.417	19.15	2.167	5.38	2.92	2.72
0.75	0 12.54	1.500	19.15	2.250	4.51	3.00	2.72
Max.Eff.Inten.(r	nm/hr)=	109.68		34.07			
over	(min)	5.00		15.00			
Storage Coeff.	(min)=	2.60	(ii)	13.45 (ii)		
Unit Hyd. Tpeak	(min)=	5.00		15.00			
Unit Hyd. peak	(cms)=	0.29		0.08			
					T0	TALS	
PEAK FLOW	(cms)=	0.05		0.09	0	.115 (iii	i)
ΤΙΜΕ ΤΟ ΡΕΑΚ	(hrs)=	1.17		1.33		1.33	

32.44 | 1.667

32.44 | 1.750

17.09

12.05 |

8.62 |

2.42

2.50

20.00

3.88

3.88

٦	FOTAL RAINFALL	(mm)=	47.25	47.25	47.25
F	RUNOFF COEFFICIE	ENT =	0.98	0.36	0.42
*****	WARNING: STORAG	GE COEFF. 3	IS SMALLER	THAN TIME STEP!	
*****	WARNING: FOR ARE	EAS WITH IN	MPERVIOUS R	ATIOS BELOW 20%	

(mm) =

3.21 | 0.917

3.97 | 1.000

0.167

0.250

RUNOFF VOLUME

YOU SHOULD CONSIDER SPLITTING THE AREA.

46.25

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 75.2$ Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ -----ADD HYD (0017) AREA QPEAK TPEAK 1 + 2 = 3 R.V. (ha) (cms) (hrs) (mm) 1.52 0.045 1.83 16.89 -----ID1= 1 (0013): + ID2= 2 (0014): 1.79 0.115 1.33 20.00 -----ID = 3 (0017): 3.31 0.118 1.50 18.57 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ADD HYD (0017) 3 + 2 = 1 AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) -----ID1= 3 (0017): 3.31 0.118 1.50 18.57 + ID2= 2 (0016): 0.37 0.035 1.33 36.34 _____ ID = 1 (0017): 3.68 0.152 1.33 20.35 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | CALIB STANDHYD (0018) | Area (ha)= 0.49 |ID= 1 DT= 5.0 min | Total Imp(%)= 28.00 Dir. Conn.(%)= 20.00 -----IMPERVIOUS PERVIOUS (i) Surface Area (ha)= Dep. Storage (mm)= 0.14 0.35 1.00 1.00 57.15 1.50 Average Slope (%)= 2.00 Length (m)= 40.00 0.013 Mannings n = 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	3.21	0.833	12.54	1.583	12.05	2.33	4.51
0.167	3.21	0.917	32.44	1.667	12.05	2.42	3.88
0.250	3.97	1.000	32.44	1.750	8.62	2.50	3.88

0.333 0.417 0.500 0.583 0.667 0.750 1	3.97 1.083 16 5.20 1.167 16 5.20 1.250 3 7.43 1.333 3 7.43 1.417 1 2.54 1.500 1	09.68 1.833 09.68 1.917 39.67 2.000 39.67 2.083 19.15 2.167 19.15 2.250	8.62 6.65 5.38 5.38 4.51	2.58 2.67 2.75 2.83 2.92 3.00	3.39 3.39 3.02 3.02 2.72 2.72
Max.Eff.Inten.(mm/hr over (min Storage Coeff. (min Unit Hyd. Tpeak (min Unit Hyd. peak (cms PEAK FLOW (cms TIME TO PEAK (hrs RUNOFF VOLUME (mm TOTAL RAINFALL (mm RUNOFF COEFFICIENT ***** WARNING: STORAGE CO ***** WARNING: STORAGE CO (i) CN PROCEDURE S)= 109.68) 5.00)= 1.76 (i)= 5.00)= 0.32)= 0.32)= 1.17)= 46.25)= 47.25 = 0.98 EFF. IS SMALLER ITH IMPERVIOUS F CONSIDER SPLITTI	52.90 15.00 15.00 0.09 0.03 1.33 20.94 47.25 0.44 THAN TIME STEP! RATIOS BELOW 20% ING THE AREA.	*TOTA 0.0 1. 25. 47. 0.	ALS* 047 (iii) .17 .99 .25 .55	
CN* = 80.7 (ii) TIME STEP (DT) THAN THE STORA (iii) PEAK FLOW DOES	Ia = Dep. Sto SHOULD BE SMALL GE COEFFICIENT. NOT INCLUDE BAS	orage (Above) ER OR EQUAL SEFLOW IF ANY.			
CALIB STANDHYD (0007) Ar ID= 1 DT= 5.0 min To	ea (ha)= 0. tal Imp(%)= 31.	46 00 Dir. Conn.	(%)= 25	5.00	
Surface Area (ha Dep. Storage (mm Average Slope (% Length (m Mannings n NOTE: RAINFALL	IMPERVIOUS)= 0.14)= 1.00)= 1.00)= 55.56 = 0.013 WAS TRANSFORMED	PERVIOUS (i) 0.32 1.50 2.00 5.00 0.250 TO 5.0 MIN. T	IME STEF	D.	
TIME hrs m 0.083 0.167	TRANS RAIN TIME m/hr hrs n 3.21 0.833 1 3.21 0.917 3	SFORMED HYETOGRA RAIN ' TIME 1m/hr ' hrs L2.54 1.583 32.44 1.667	PH RAIN mm/hr 12.05 12.05	TIME hrs 2.33 2.42	RAIN mm/hr 4.51 3.88

0.2503.970.3333.970.4175.200.5005.200.5837.430.6677.430.75012.54	1.000 32.44 1.083 109.68 1.167 109.68 1.250 39.65 1.333 39.65 1.417 19.19 1.500 19.19	4 1.750 8 1.833 8 1.917 7 2.000 7 2.083 5 2.167 5 2.250	8.62 8.62 6.65 5.38 5.38 4.51	2.50 2.58 2.67 2.75 2.83 2.92 3.00	3.88 3.39 3.39 3.02 3.02 2.72 2.72
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	109.68 5.00 1.73 (ii) 5.00 0.32	78.76 5.00 4.66 (ii) 5.00 0.22	*****		
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.04 1.17 46.25 47.25 0.98	0.07 1.17 29.89 47.25 0.63	*101A 0.1 1. 33. 47. 0.	NLS* 02 (iii) 17 97 25 72	
<pre>***** WARNING: STORAGE COEFF. (i) CN PROCEDURE SELECT CN* = 90.5 Ia (ii) TIME STEP (DT) SHOU THAN THE STORAGE CO (iii) PEAK FLOW DOES NOT</pre>	IS SMALLER THAN ED FOR PERVIOUS = Dep. Storage LD BE SMALLER (EFFICIENT. INCLUDE BASEFL(N TIME STEP! 5 LOSSES: e (Above) DR EQUAL DW IF ANY.			
CALIB STANDHYD (0001) Area ID= 1 DT= 5.0 min Total I	(ha)= 1.09 mp(%)= 5.00	Dir. Conn.	(%)= 5	.00	
Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n =	IMPERVIOUS 0.05 1.00 1.00 85.24 0.013	PERVIOUS (i) 1.04 1.50 2.00 40.00 0.250			
NOTE: RAINFALL WAS T	RANSFORMED TO TRANSFORM TIME RAIM	5.0 MIN. T MED HYETOGRA N ' TIME	IME STEP PH RAIN	Υ. TIME	RAIN

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.083	3.21	0.833	12.54	1.583	12.05	2.33	4.51	
0.167	3.21	0.917	32.44	1.667	12.05	2.42	3.88	
0.250	3.97	1.000	32.44	1.750	8.62	2.50	3.88	

0.333 0.417 0.500 0.583 0.667 0.750	3.97 7 5.20 9 5.20 9 7.43 7 12.54	1.083 1 1.167 1 1.250 1.333 1.417 1.500	09.68 1 09.68 1 39.67 2 39.67 2 19.15 2 19.15 2	.833 .917 .000 .083 .167 .250	8.62 6.65 6.65 5.38 5.38 4.51	2.58 2.67 2.75 2.83 2.92 3.00	3.39 3.39 3.02 3.02 2.72 2.72
Max.Eff.Inten.(n over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE	<pre>mm/hr)= (min) (min)= (min)= (cms)= (cms)= (hrs)= (mm)= (mm)= SNT =</pre>	109.68 5.00 2.24 (5.00 0.30 0.02 1.17 46.25 47.25 0.98	27. 15. 11) 14. 15. 0. 1. 15. 47. 0.	73 00 03 (ii) 00 08 05 33 24 25 32	*TOTAL 0.05 1.3 16.7 47.2 0.3	.S* 9 (iii) 3 79 25 36	
***** WARNING: STORAG ***** WARNING:FOR ARE YOU SHO (i) CN PROCEDU CN* = 7 (ii) TIME STEP THAN THE S (iii) PEAK FLOW	GE COEFF. IS AS WITH IMP OULD CONSIDE JRE SELECTED 73.5 Ia = (DT) SHOULD GTORAGE COEF DOES NOT IN	SMALLER ERVIOUS R SPLITT FOR PER Dep. St BE SMAL FICIENT.	THAN TIM RATIOS BE ING THE A VIOUS LOS orage (A LER OR EQ SEFLOW IF	E STEP! LOW 20% REA. SES: bove) UAL ANY.			
RESERVOIR(0002) IN= 2> OUT= 1	OVERFLO	W IS OFF					
DT= 5.0 min	OUTFLOW (cms) 0.0000 0.0015 0.0017 0.0019 0.0020 0.0257 0.0349 0.0421 0.0482	STOR. (ha.) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	AGE m.) 000 019 029 042 059 076 094 113	OUTFLOW (cms) 0.0536 0.0585 0.0630 0.0673 0.0713 0.0751 0.0787 0.0822 0.0000	STORA (ha.n 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	AGE 1.) 132 150 167 182 197 207 207 2216 226 0000	
INFLOW : ID= 2 (OUTFLOW: ID= 1 (0001) 0002)	AREA (ha) 1.090 1.090	QPEAK (cms) 0.059 0.033	1PEAK (hrs) 1.3 1.7	R. (n 3 1 5 1	v. m) .6.79 .6.64	

PEAK REDUCTION [Qout/Qin](%) = 56.08 FLOW TIME SHIFT OF PEAK FLOW (min) = 25.00MAXIMUM STORAGE USED (ha.m.)= 0.0073 _____ | CALIB STANDHYD (0003) | Area (ha)= 1.15 |ID= 1 DT= 5.0 min | Total Imp(%)= 5.00 Dir. Conn.(%)= 5.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.06 1.09 1.00 1.50 Dep. Storage (mm)= Average Slope (%)= 1.00 2.00 Length (m)= 87.56 40.00 Mannings n 0.013 0.250 = NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN | TIME TIME RAIN | TIME RAIN mm/hr | hrs mm/hr | hrs mm/hr | hrs hrs mm/hr 3.21 | 0.833 12.54 | 1.583 12.05 | 2.33 0.083 4.51 32.44 | 1.667 0.167 3.21 | 0.917 12.05 | 2.42 3.88 0.250 3.97 | 1.000 32.44 | 1.750 8.62 2.50 3.88 0.333 3.97 | 1.083 109.68 | 1.833 8.62 2.58 3.39 0.417 5.20 | 1.167 109.68 | 1.917 6.65 2.67 3.39 6.65 | 2.75 0.500 5.20 | 1.250 39.67 | 2.000 3.02 7.43 | 1.333 39.67 | 2.083 5.38 | 2.83 0.583 3.02 7.43 | 1.417 5.38 | 2.92 19.15 | 2.167 0.667 2.72 12.54 | 1.500 19.15 | 2.250 4.51 | 3.00 2.72 0.750 Max.Eff.Inten.(mm/hr)= 109.68 27.73

 over (min)
 5.00

 Storage Coeff. (min)=
 2.27 (ii)

 Unit Hyd. Tpeak (min)=
 5.00

 Unit Hyd. peak (cms)=
 0.30

 15.00 14.06 (ii) 15.00 0.08 *TOTALS* PEAK FLOW 0.06 (cms)= 0.02 0.062 (iii) TIME TO PEAK (hrs)= 1.17 1.33 1.33 46.25 RUNOFF VOLUME (mm)= 15.24 16.79 TOTAL RAINFALL (mm)= 47.25 47.25 RUNOFF COEFFICIENT = 0.98 0.32 0.36

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA.

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 73.5 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. -----ADD HYD (0004) AREA QPEAK TPEAK (ha) (cms) (hrs) 1 + 2 = 3 R.V. (mm) -----ID1= 1 (0002): 1.09 0.033 1.75 16.64 + ID2= 2 (0003): 1.15 0.062 1.33 16.79 ID = 3 (0004): 2.24 0.082 1.42 16.72 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ OVERFLOW IS OFF | RESERVOIR(0005)| | IN= 2---> OUT= 1 | OUTFLOW STORAGE OUTFLOW STORAGE | DT= 5.0 min | ------(cms) (ha.m.) | (cms) (ha.m.) 0.0253 0.0000 0.0000 0.0029 0.0019 0.0617 0.0674 0.0289
 0.0032
 0.0037
 0.0726

 0.0036
 0.0056
 0.0775

 0.0039
 0.0082
 0.0821

 0.0299
 0.0113
 0.0865

 0.0404
 0.0147
 0.0906
 0.0726 0.0321 0.0775 0.0350 0.0821 0.0380 0.0398 0.0906 0.0946 0.0417 0.0486 0.0182 0.0435 0.0555 0.0218 0.0000 0.0000 AREA QPEAK TPEAK R.V. (cms) (hrs) (ha) (mm) INFLOW : ID= 2 (0004)2.2400.082OUTFLOW: ID= 1 (0005)2.2400.042 1.42 16.72 2.17 16.65 PEAK FLOW REDUCTION [Qout/Qin](%) = 51.08 TIME SHIFT OF PEAK FLOW (min)= 45.00 MAXIMUM STORAGE USED (ha.m.)= 0.0154 _____ CALIB STANDHYD (0006) | Area (ha)= 1.89 |ID= 1 DT= 5.0 min | Total Imp(%)= 13.00 Dir. Conn.(%)= 13.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.25 1.64

Dep. Storage	(mm)=	1.00	1.50
Average Slope	(%)=	1.00	2.00
Length	(m)=	112.22	40.00
Mannings n	=	0.013	0.250

	TRANSFORMED	HYETOGRAPH
--	-------------	------------

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	3.21	0.833	12.54	1.583	12.05	2.33	4.51
0.167	3.21	0.917	32.44	1.667	12.05	2.42	3.88
0.250	3.97	1.000	32.44	1.750	8.62	2.50	3.88
0.333	3.97	1.083	109.68	1.833	8.62	2.58	3.39
0.417	5.20	1.167	109.68	1.917	6.65	2.67	3.39
0.500	5.20	1.250	39.67	2.000	6.65	2.75	3.02
0.583	7.43	1.333	39.67	2.083	5.38	2.83	3.02
0.667	7.43	1.417	19.15	2.167	5.38	2.92	2.72
0.750	12.54	1.500	19.15	2.250	4.51	3.00	2.72

Max.Eff.Inten.(n	nm/hr)=	109.68	29.09	
over	(min)	5.00	15.00	
Storage Coeff.	(min)=	2.64 (ii)	14.20 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	15.00	
Unit Hyd. peak	(cms)=	0.29	0.08	
				TOTALS
PEAK FLOW	(cms)=	0.07	0.09	0.117 (iii)
TIME TO PEAK	(hrs)=	1.17	1.33	1.17
RUNOFF VOLUME	(mm)=	46.25	15.93	19.87
TOTAL RAINFALL	(mm)=	47.25	47.25	47.25
RUNOFF COEFFICIE	ENT =	0.98	0.34	0.42

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA.

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 74.8 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0008)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0005):	2.24	0.042	2.17	16.65

+ ID2= 2 (0006): 1.89 0.117 1.17 19.87 _____ ID = 3 (0008): 4.13 0.1201.17 18.12 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ -----ADD HYD (0008) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 3 + 2 = 1 ID1= 3 (0008): 4.13 0.120 1.17 18.12 + ID2= 2 (0007): 0.46 0.102 1.17 33.97 _____ ID = 1 (0008): 4.59 0.221 1.17 19.72 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ADD HYD (0019) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 1 + 2 = 3 ------ID1= 1 (0017): 3.68 0.152 1.33 20.35 + ID2= 2 (0018): 0.49 0.047 1.17 25.99 -----ID = 3 (0019): 4.17 0.195 1.33 21.02 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ADD HYD (0019) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 3 + 2 = 1 -----ID1= 3 (0019): 4.17 0.195 1.33 21.02 + ID2= 2 (0008): 4.59 0.221 1.17 19.72 ID = 1 (0019): 8.76 0.401 1.17 20.34 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

_____ SSSSS U U (v 6.2.2015) V V Ι А L V V Т SS U ΑΑ U _____ V V Ι SS U U AAAAA L V V Ι SS A L U UΑ VV Ι SSSSS UUUUU Α A LLLLL 000 ΤΤΤΤΤ ΤΤΤΤΤ Η H Y Y M М 000 ТΜ 0 0 Т Н Н ΥY MM MM 0 Т 0 т 0 0 Т Н Н Υ М М 0 0 000 Т Т Υ Μ Μ 000 Н Н Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved. ***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Output filename: C:\Users\jangsoo.lee\AppData\Local\Civica\VH5\72fe312b-9676-436f-b6d3-c40a805b884b\d 63d498b-34e9-4c2b-bccd-f7bea1f77cc4 Summary filename: C:\Users\jangsoo.lee\AppData\Local\Civica\VH5\72fe312b-9676-436f-b6d3-c40a805b884b\d 63d498b-34e9-4c2b-bccd-f7bea1f77cc4 DATE: 01/26/2024 TIME: 01:25:58 USER: COMMENTS: _____ ------** ** SIMULATION : 100yr-3hr 10min Chicago CHICAGO STORM IDF curve parameters: A=4688.000 | Ptotal= 87.06 mm | B= 17.000 C= 0.962

	used in:	INTENSITY =	A / (t + B) [,]	°C	
	Duration of Storm time Time to peal	storm = 3 step = 10 < ratio = 0	.00 hrs .00 min .38		
TIME hrs 0.00 0.17 0.33 0.50 0.67	RAIN TII mm/hr hi 4.42 0.3 5.87 1.6 8.33 1.7 13.04 1.7 24.27 1.9	ME RAIN rs mm/hr 83 66.23 00 196.54 17 81.01 33 38.79 50 23.19	' TIME R/ ' hrs mm, 1.67 15.0 1.83 11.1 2.00 8.1 2.17 6.9 2.33 5.0	AIN TIME /hr hrs 53 2.50 36 2.67 71 2.83 93 58	RAIN mm/hr 4.76 4.07 3.53
CALIB STANDHYD (0011) ID= 1 DT= 5.0 min	Area (ha): Total Imp(%):	= 0.46 = 6.00 D	ir. Conn.(%):	= 6.00	
Surface Area Dep. Storage Average Slope Length Mannings n NOTE: RAINFA	IMPER (ha)= 0 (mm)= 1 (%)= 1 (m)= 55 = 0.0	VIOUS PER .03 .00 .00 .38 4 013 0 DRMED TO 5	VIOUS (i) 0.43 1.50 2.00 0.00 .250 .0 MIN. TIME	STEP.	
TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750	RAIN TI mm/hr hi 4.42 0.83 4.42 0.93 5.87 1.00 5.87 1.00 8.33 1.10 8.33 1.10 8.33 1.21 13.04 1.33 13.04 1.43	TRANSFORMED ME RAIN rs mm/hr 33 24.27 17 66.23 20 66.23 83 196.54 57 196.54 50 81.01 33 81.01 17 38.79 20 38.79	HYETOGRAPH ' TIME R/ ' hrs mm, 1.583 23.3 1.667 23.3 1.750 15.0 1.833 15.0 1.917 11.3 2.000 11.3 2.083 8.3 2.167 8.3 2.250 6.9	AIN TIME /hr hrs 19 2.33 19 2.42 53 2.50 53 2.58 36 2.67 36 2.75 71 2.83 71 2.92 93 3.00	RAIN mm/hr 6.93 5.68 5.68 4.76 4.76 4.76 4.07 3.53 3.53
Max.Eff.Inten.(mm over (Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (n/hr)= 196 (min) 5 (min)= 1 (min)= 5 (cms)= 0	.54 9 .00 1 .37 (ii) .00 1 .33	2.31 0.00 8.65 (ii) 0.00 0.12	*TOTALS*	

PEAK FL	JM	(cms)=	0.02		0.08	0.	086 (iii)	
TIME TO	PEAK	(hrs)=	1.17		1.25	1	.25	
RUNOFF	/OLUME	(mm)=	86.06		41.32	44	.00	
TOTAL R	AINFALL	(mm)=	87.06		87.06	87	.06	
RUNOFF	COEFFICIE	NT =	0.99		0.47	0	.51	
***** WARNIN ***** WARNIN	G: STORAG	E COEFF.	IS SMALL	ER THAN 5 RATIOS	TIME STEP 5 BELOW 20	! %		
	YUU SHU	ULD CONST	JER SPLI		IE AKEA.			
(i) C	N PROCEDU	RE SELECT	ED FOR PI	ERVIOUS	LOSSES:			
	CN* = 7	'3.5 Ia	= Dep. 3	Storage	(Above)			
(ii) T	IME STEP	(DT) SHOU	LD BE SM	ALLER OF	r EQUAL			
T (HAN THE S	TORAGE CO	EFFICIEN	Γ.				
(iii) P	EAK FLOW	DOES NOT	INCLUDE I	BASEFLO	V IF ANY.			
CALIB			<i>/</i> 1	4 96				
STANDHYD (0009)	Area	(na)=	1.06	D ¹	(0/)	<	
ID= 1 DI= 5	.0 min	lotal l	np(%)=	6.00	Dir. Conn	.(%)=	6.00	
			IMPERVIO	JS PI	ERVIOUS (i)		
Surface	Area	(ha)=	0.06		1.00	•		
Dep. St	orage	(mm)=	1.00		1.50			
Average	Slope	(%)=	1.00		2.00			
Length		(m)=	84.06		40.00			
Manning	s n	=	0.013		0.250			
NOT						ттме сте	D	
NUT	:: KAINF	ALL WAS I	KANSFURM	ED TO	5.0 MIN.	IIME SIE	Ρ.	
			TR/	ANSFORM	ED HYETOGR	APH		
	TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
	hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
	0.083	4.42	0.833	24.27	1.583	23.19	2.33	6.93
	0.167	4.42	0.917	66.23	1.667	23.19	2.42	5.68
	0.250	5.87	1.000	66.23	1.750	15.63	2.50	5.68
	0.333	5.87	1.083	196.54	1.833	15.63	2.58	4.76
	0.417	8.33	1.167	196.54	1.917	11.36	2.67	4.76
	0.500	8.33	1.250	81.01	2.000	11.36	2.75	4.07
	0.583	13.04	1.333	81.01	2.083	8.71	2.83	4.07
	0.667	13.04	1.417	38.79	2.167	8.71	2.92	3.53
	0.750	24.27	1.500	38.79	2.250	6.93	3.00	3.53
Max Fff	.Inten (m	m/hr)=	196.54		92,31			
	over	(min)	5.00		10.00			
Storage	Coeff.	(min)=	1.76	(ii)	9.04 (ii)		
Unit Hv	d. Tpeak	(min)=	5.00	<u>\</u> /	10.00	,		
Unit Hy	d. peak	(cms)=	0.32		0.12			

				TOTALS
PEAK FLOW	(cms)=	0.03	0.18	0.195 (iii)
TIME TO PEAK	(hrs)=	1.17	1.25	1.25
RUNOFF VOLUME	(mm)=	86.06	41.32	44.00
TOTAL RAINFALL	(mm)=	87.06	87.06	87.06
RUNOFF COEFFICI	ENT =	0.99	0.47	0.51

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING: FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA.

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 73.5 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0010) IN= 2> OUT= 1	OVERFLOW	IS OFF			
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE	
	(cms)	(ha.m.)	(cms)	(ha.m.)	
	0.0000	0.0000	0.0769	0.0120	
	0.0014	0.0009	0.0842	0.0136	
	0.0015	0.0018	0.0910	0.0152	
	0.0017	0.0026	0.0974	0.0165	
	0.0018	0.0039	0.1033	0.0179	
	0.0338	0.0054	0.1089	0.0188	
	0.0484	0.0069	0.1143	0.0197	
	0.0594	0.0086	0.1194	0.0206	
	0.0687	0.0103	0.0000	0.0000	
	AF	REA QPEAK	TPEAK	R.V.	
	()	na) (cms)	(hrs)	(mm)	
INFLOW : ID= 2 (0009) 1.	.060 0.19	95 1.25	44.00	
OUTFLOW: ID= 1 (0010) 1.	.060 0.10	92 1.58	43.86	
PE	AK FLOW F	REDUCTION [QOU	ut/Qin](%)= 5 (min)= 2	2.16	
MA	XIMUM STORAG	GE USED	(ha.m.)= 2	0.0176	
			(

ADD HYD (0012)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0010):	1.06	0.102	1.58	43.86
+ ID2= 2 (0011):	0.46	0.086	1.25	44.00

ID = 3 (0012): 1.52 0.164 1.33 43.90

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

_____ | RESERVOIR(0013)| OVERFLOW IS OFF | IN= 2---> OUT= 1 | | DT= 5.0 min | OUTFLOW STORAGE OUTFLOW STORAGE (cms) (ha.m.) (cms) (ha.m.) 0.0000 0.0000 0.0772 0.0133 0.0015 0.0010 0.0846 0.0152 0.0017 0.0020 0.0914 0.0169 0.0019 0.0029 0.0977 0.0184 0.0020 0.0043 0.1037 0.0199 0.0340 0.0060 0.1093 0.0209 | 0.1147 0.0486 0.0077 0.0219 0.0597 0.0096 0.1198 0.0229 0.0690 0.0114 0.0000 0.0000 AREA **QPEAK** TPEAK R.V. (cms) (hrs) (mm) (ha) INFLOW : ID= 2 (0012) 43.90 1.520 0.164 1.33 OUTFLOW: ID= 1 (0013) 1.520 0.104 1.92 43.80 PEAK FLOW REDUCTION [Qout/Qin](%)= 63.50 TIME SHIFT OF PEAK FLOW (min)= 35.00 MAXIMUM STORAGE USED (ha.m.)= 0.0200 CALIB | STANDHYD (0015)| Area (ha)= 0.37 |ID= 1 DT= 5.0 min | Total Imp(%)= 47.00 Dir. Conn.(%)= 30.00 -----IMPERVIOUS PERVIOUS (i) Surface Area 0.20 (ha) =0.17 (mm)= 1.50 Dep. Storage 1.00 Average Slope (%)= 1.00 2.00 Length (m)= 49.60 5.00 = 0.013 Mannings n 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAINTIMERAINTIMEmm/hrhrsmm/hr'hrsmm/hr TIME RAIN hrs mm/hr 0.083 4.42 0.833 24.27 1.583 23.19 2.33 6.93 4.42 | 0.917 66.23 | 1.667 23.19 | 2.42 0.167 5.68

0.250 5.87 0.333 5.87 0.417 8.33 0.500 8.33 0.583 13.04 0.667 13.04 0.750 24.27	1.000 1.083 1.167 1.250 1.333 1.417 1.500	66.23 196.54 196.54 81.01 81.01 38.79 38.79	1.750 1.833 1.917 2.000 2.083 2.167 2.250	$\begin{array}{c cccc} 15.63 & \\ 15.63 & \\ 11.36 & \\ 11.36 & \\ 8.71 & \\ 8.71 & \\ 6.93 & \end{array}$	2.50 2.58 2.67 2.75 2.83 2.92 3.00	5.68 4.76 4.76 4.07 4.07 3.53 3.53
<pre>Max.Eff.Inten.(mm/hr)=</pre>	196.54 5.00 1.28 5.00 0.33 0.06 1.17 86.06 87.06	222 (ii) 3 6 1 69 87	2.38 5.00 3.22 (ii) 5.00 0.27 0.12 1.17 0.57 7.06	*T01 0. 74 87	ALS* 181 (iii .17 .52 7.06)
RUNOFF COEFFICIENT = ***** WARNING: STORAGE COEFF. I (i) CN PROCEDURE SELECTE CN* = 90.5 Ia (ii) TIME STEP (DT) SHOUL THAN THE STORAGE COE (iii) PEAK FLOW DOES NOT I	0.99 S SMALLE D FOR PE = Dep. S D BE SMA FFICIENT NCLUDE B	R THAN TI RVIOUS LC torage (LLER OR E ASEFLOW I).80 IME STEP! OSSES: (Above) EQUAL IF ANY.	e).86	
<pre> RESERVOIR(0016) OVERFL IN= 2> OUT= 1 DT= 5.0 min OUTFLO (cms) **** WARNING : FIRST OUTFL 0.001 0.001 0.016 0.023 0.023 0.032 0.036 0.039</pre>	OW IS OF W STO (ha OW IS NO 0 0. 0 0. 0 0. 1 0. 1 0. 1 0. 1 0. 1 0.	F RAGE .m.) T ZERO. 0000 0008 0008 0016 0024 0033 0043 0043 0053 0063 QPEAK (cms)	OUTFLOW (cms) 0.0425 0.0454 0.0454 0.0507 0.0555 0.0577 0.0599 TPEAk (hrs)	I STC (ha 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	DRAGE a.m.) 0.0073 0.0083 0.0093 0.0103 0.0112 0.0120 0.0128 0.0128 0.0136 R.V. (mm)	
INFLOW : ID= 2 (0015) OUTFLOW: ID= 1 (0016) PEAK FLOW	(114) 0.369 0.369 REDUCT	0.181 0.057 0.001	(III'S) 1. 7 1. 7/0inl(%)	17 42 = 31.28	74.52 74.55	
TIME SHI	FT OF PEAK	FLOW	(min)= 15.00			
----------	------------	------	-----------------			
MAXIMUM	STORAGE	USED	(ha.m.)= 0.0126			

CALIB | STANDHYD (0014)| 1.79 Area (ha) =|ID= 1 DT= 5.0 min | Total Imp(%) = 17.00Dir. Conn.(%)= 10.00 **IMPERVIOUS** PERVIOUS (i) Surface Area 0.30 1.48 (ha) =1.50 Dep. Storage (mm)= 1.00 Average Slope (%)= 1.00 2.00 Length (m) =109.21 40.00 Mannings n = 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----TIME RAIN | TIME RAIN |' TIME RAIN TIME RAIN mm/hr |' hrs mm/hr | hrs hrs mm/hr | hrs mm/hr 0.083 4.42 0.833 24.27 | 1.583 23.19 2.33 6.93

66.23 | 1.667

66.23 | 1.750

196.54 | 1.917

81.01 | 2.000

81.01 | 2.083

23.19 |

15.63

15.63

11.36 |

11.36

8.71

2.42

2.50

2.58

2.67

2.75

2.83

5.68

5.68

4.76

4.76

4.07

4.07

0.667	7 13.04	1.417	38.79 2.167	8.71 2.92	3.53
0.756	9 24.27	1.500	38.79 2.250	6.93 3.00	3.53
Max.Eff.Inten.(m	nm/hr)=	196.54	110.65		
over	(min)	5.00	10.00		
Storage Coeff.	(min)=	2.06	(ii) 8.83 (ii)		
Unit Hyd. Tpeak	(min)=	5.00	10.00		
Unit Hyd. peak	(cms)=	0.31	0.12		
-				*TOTALS*	
PEAK FLOW	(cms)=	0.10	0.32	0.368 (iii)	
TIME TO PEAK	(hrs)=	1.17	1.25	1.25	
RUNOFF VOLUME	(mm)=	86.06	45.05	49.15	
TOTAL RAINFALL	(mm)=	87.06	87.06	87.06	
RUNOFF COEFFICIE	ENT =	0.99	0.52	0.56	

5.87 | 1.083 196.54 | 1.833

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA.

0.167

0.250

0.333

0.417

0.500

0.583

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 75.2 Ia = Dep. Storage (Above)

4.42 | 0.917

5.87 | 1.000

8.33 | 1.167

8.33 | 1.250

13.04 | 1.333

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ -----ADD HYD (0017)

 2 = 3
 AREA
 QPEAK
 TPEAK
 R.V.

 (ha)
 (cms)
 (hrs)
 (mm)

 ID1= 1
 0013):
 1.52
 0.104
 1.92
 43.80

 1 + 2 = 3 | -----+ ID2= 2 (0014): 1.79 0.368 1.25 49.15 ID = 3 (0017): 3.31 0.417 1.25 46.69 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ADD HYD (0017) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 3 + 2 = 1 -----ID1= 3 (0017): 3.31 0.417 1.25 46.69 + ID2= 2 (0016): 0.37 0.057 1.42 74.55 1.25 46.69 _____ ID = 1 (0017): 3.68 0.470 1.25 49.49 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ | CALIB STANDHYD (0018) Area (ha)= 0.49 |ID= 1 DT= 5.0 min | Total Imp(%)= 28.00 Dir. Conn.(%)= 20.00 ------IMPERVIOUS PERVIOUS (i) Surface Area(ha)=Dep. Storage(mm)=Average Slope(%)= 0.14 0.35 (mm) = 1.00 (%) = 1.00 (m) = 57.151.50 2.00 Length 40.00 Mannings n = 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----

TIME	RAIN TI	ME RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr h	rs mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	4.42 0.8	33 24.27	1.583	23.19	2.33	6.93
0.167	4.42 0.9	17 66.23	1.667	23.19	2.42	5.68
0.250	5.87 1.0	66.23	1.750	15.63	2.50	5.68

0.333 0.417 0.500 0.583 0.667 0.750	5.87 8.33 8.33 13.04 13.04 24.27	1.083 1.167 1.250 1.333 1.417 1.500	196.54 196.54 81.01 81.01 38.79 38.79	1.833 1.917 2.000 2.083 2.167 2.250	15.63 11.36 11.36 8.71 8.71 6.93	2.58 2.67 2.75 2.83 2.92 3.00	4.76 4.76 4.07 4.07 3.53 3.53		
Max.Eff.Inten.(m over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	m/hr)= (min) (min)= (min)= (cms)=	196.54 5.00 1.39 5.00 0.33	(ii)	135.11 10.00 7.65 (i: 10.00 0.13	i)				
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE	(cms)= (hrs)= (mm)= (mm)= NT =	0.05 1.17 86.06 87.06 0.99		0.10 1.25 52.31 87.06 0.60	*T0 0. 59 87	TALS* .136 (iii) 1.17 9.06 7.06 0.68			
<pre>***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20%</pre>									
(III) PEAK FLOW CALIB STANDHYD (0007) ID= 1 DT= 5.0 min	Area (Total Imp	(ha)= 0(%)=	0.46 0.46	Dir. Con	n.(%)= 2	25.00			
Surface Area Dep. Storage Average Slope Length Mannings n	IN (ha)= (mm)= (%)= (m)= =	1PERVIO 0.14 1.00 1.00 55.56 0.013	US PI	ERVIOUS (: 0.32 1.50 2.00 5.00 0.250	i)				
NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.083 4.42 0.833 24.27 1.583 23.19 2.33 6.93 0.167 4.42 0.917 66.23 1.667 23.19 2.42 5.68									

0.250 0.333 0.417 0.500 0.583 0.667 0.750	$\begin{array}{c} 5.87 \\ 5.87 \\ 8.33 \\ 8.33 \\ 13.04 \\ 13.04 \\ 24.27 \\ \end{array}$	1.000 1.083 1.167 1.250 1.333 1.417 1.500	66.23 196.54 196.54 81.01 81.01 38.79 38.79	1.750 1.833 1.917 2.000 2.083 2.167 2.250	15.63 15.63 11.36 11.36 8.71 8.71 6.93	2.50 2.58 2.67 2.75 2.83 2.92 3.00	5.68 4.76 4.76 4.07 4.07 3.53 3.53		
Max.Eff.Inten.(m over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	n/hr)= (min) (min)= (min)= (cms)=	196.54 5.00 1.37 5.00 0.33	1 (ii)	74.89 5.00 3.69 (ii 5.00 0.25)				
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE	(cms)= (hrs)= (mm)= (mm)= NT =	0.06 1.17 86.06 87.06 0.99		0.15 1.17 66.61 87.06 0.77	*1017 0.2 1. 71. 87. 0.	ALS* 216 (iii) .17 .46 .06 .82			
<pre>***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 90.5 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</pre>									
CALIB STANDHYD (0001) ID= 1 DT= 5.0 min	Area (Total Imp	ha)= (%)=	1.09 5.00	Dir. Conn	.(%)= 5	5.00			
Surface Area Dep. Storage Average Slope Length Mannings n	IM (ha)= (mm)= (%)= (m)= =	PERVIOU 0.05 1.00 1.00 85.24 0.013	IS PE	RVIOUS (i) 1.04 1.50 2.00 40.00 0.250)				
NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN ' TIME RAIN TIME RAIN									

I TWF	RAIN	I TWF	RAIN	I. ITWF	RAIN	I ITWF	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	4.42	0.833	24.27	1.583	23.19	2.33	6.93
0.167	4.42	0.917	66.23	1.667	23.19	2.42	5.68
0.250	5.87	1.000	66.23	1.750	15.63	2.50	5.68

0.333 5.87 0.417 8.33 0.500 8.33 0.583 13.04 0.667 13.04 0.750 24.27	1.083 196.54 1.167 196.54 1.250 81.01 1.333 81.01 1.417 38.79 1.500 38.79	1.833 15 1.917 11 2.000 11 2.083 8 2.167 8 2.250 6	63 2.58 36 2.67 36 2.75 71 2.83 71 2.92 93 3.00	4.76 4.76 4.07 4.07 3.53 3.53					
<pre>Max.Eff.Inten.(mm/hr)=</pre>	196.54 5.00 1.77 (ii) 5.00 0.32 0.03 1.17 86.06 87.06 0.99	92.31 10.00 9.06 (ii) 10.00 0.12 0.19 1.25 41.32 87.06 0.47	*TOTALS* 0.199 (iii) 1.25 43.56 87.06 0.50						
<pre>**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 73.5 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</pre>									
RESERVOIR(0002) OVERFL IN= 2> OUT= 1 DT= 5.0 min OUTFLO (cms) 0.000 0.001 0.001 0.001 0.002 0.025 0.034 0.042 0.048	OW IS OFF W STORAGE (ha.m.) 0 0.0000 5 0.0010 7 0.0019 9 0.0029 0 0.0042 7 0.0059 9 0.0076 1 0.0094 2 0.0113	<pre>OUTFLOW (cms) 0.0536 0.0585 0.0630 0.0673 0.0713 0.0751 0.0787 0.0822 0.0000</pre>	STORAGE (ha.m.) 0.0132 0.0150 0.0167 0.0182 0.0197 0.0207 0.0216 0.0226 0.0000						
INFLOW : ID= 2 (0001) OUTFLOW: ID= 1 (0002)	AREA QPEA (ha) (cms 1.090 0. 1.090 0.	K TPEAK) (hrs) 199 1.25 080 1.67	R.V. (mm) 43.56 43.41						

PEAK REDUCTION [Qout/Qin](%)= 40.14 FLOW TIME SHIFT OF PEAK FLOW (min) = 25.00MAXIMUM STORAGE USED (ha.m.)= 0.0221 _____ | CALIB STANDHYD (0003) | Area (ha)= 1.15 |ID= 1 DT= 5.0 min | Total Imp(%)= 5.00 Dir. Conn.(%)= 5.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.06 1.09 1.00 1.50 Dep. Storage (mm)= Average Slope (%)= 1.00 2.00 Length (m)= 87.56 40.00 Mannings n 0.013 0.250 = NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN | TIME TIME RAIN | TIME RAIN mm/hr | hrs mm/hr | hrs mm/hr | hrs hrs mm/hr 4.42 | 0.833 24.27 | 1.583 23.19 | 2.33 0.083 6.93 66.23 | 1.667 0.167 4.42 | 0.917 23.19 2.42 5.68 0.250 5.87 | 1.000 66.23 | 1.750 15.63 2.50 5.68 0.333 5.87 | 1.083 196.54 | 1.833 15.63 2.58 4.76 0.417 8.33 | 1.167 196.54 | 1.917 11.36 | 2.67 4.76 0.500 8.33 | 1.250 81.01 | 2.000 11.36 | 2.75 4.07 0.583 13.04 | 1.333 81.01 | 2.083 8.71 | 2.83 4.07 0.667 13.04 | 1.417 38.79 | 2.167 8.71 | 2.92 3.53 24.27 | 1.500 38.79 | 2.250 6.93 | 3.00 0.750 3.53 Max.Eff.Inten.(mm/hr)= 196.54 92.31

 over (min)
 5.00

 Storage Coeff. (min)=
 1.80 (ii)

 Unit Hyd. Tpeak (min)=
 5.00

 Unit Hyd. peak (cms)=
 0.32

 10.00 9.09 (ii) 10.00 0.12 *TOTALS* PEAK FLOW 0.20 (cms)= 0.03 0.210 (iii) TIME TO PEAK (hrs)= 1.17 1.25 1.25 86.06 87.06 41.32 RUNOFF VOLUME (mm)= 43.56 TOTAL RAINFALL (mm)= 87.06 87.06 RUNOFF COEFFICIENT = 0.99 0.47 0.50

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA.

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 73.5 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. -----ADD HYD (0004) AREA QPEAK TPEAK (ha) (cms) (hrs) 1 + 2 = 3 R.V. (mm) -----ID1= 1 (0002): 1.09 0.080 1.67 43.41 + ID2= 2 (0003): 1.15 0.210 1.25 43.56 ID = 3 (0004): 2.24 0.260 1.25 43.49 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ OVERFLOW IS OFF | RESERVOIR(0005)| | IN= 2---> OUT= 1 | OUTFLOW STORAGE OUTFLOW STORAGE | DT= 5.0 min | ------(cms) (ha.m.) | (cms) (ha.m.) 0.0253 0.0000 0.0000 0.0029 0.0019 0.0617 0.0674 0.0289

 0.0032
 0.0037
 0.0726

 0.0036
 0.0056
 0.0775

 0.0039
 0.0082
 0.0821

 0.0299
 0.0113
 0.0865

 0.0404
 0.0147
 0.0906

 0.0726 0.0321 0.0775 0.0350 0.0821 0.0380 0.0398 0.0906 0.0946 0.0417 0.0486 0.0182 0.0435 0.0555 0.0218 0.0000 0.0000 AREA QPEAK TPEAK R.V. (cms) (hrs) (ha) (mm) INFLOW : ID= 2 (0004)2.2400.260OUTFLOW: ID= 1 (0005)2.2400.094 1.25 43.49 2.17 43.42 PEAK FLOW REDUCTION [Qout/Qin](%)= 36.06 TIME SHIFT OF PEAK FLOW (min)= 55.00 (ha.m.)= 0.0431 MAXIMUM STORAGE USED _____ CALIB STANDHYD (0006) | Area (ha)= 1.89 |ID= 1 DT= 5.0 min | Total Imp(%)= 13.00 Dir. Conn.(%)= 13.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.25 1.64

Dep. Storage	(mm)=	1.00	1.50
Average Slope	(%)=	1.00	2.00
Length	(m)=	112.22	40.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRANSFORMED	HYETOGRAPH
--	-------------	------------

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	4.42	0.833	24.27	1.583	23.19	2.33	6.93
0.167	4.42	0.917	66.23	1.667	23.19	2.42	5.68
0.250	5.87	1.000	66.23	1.750	15.63	2.50	5.68
0.333	5.87	1.083	196.54	1.833	15.63	2.58	4.76
0.417	8.33	1.167	196.54	1.917	11.36	2.67	4.76
0.500	8.33	1.250	81.01	2.000	11.36	2.75	4.07
0.583	13.04	1.333	81.01	2.083	8.71	2.83	4.07
0.667	13.04	1.417	38.79	2.167	8.71	2.92	3.53
0.750	24.27	1.500	38.79	2.250	6.93	3.00	3.53

Max.Eff.Inten.(r	nm/hr)=	196.54	96.03	
over	(min)	5.00	10.00	
Storage Coeff.	(min)=	2.09 (ii)	9.26 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	10.00	
Unit Hyd. peak	(cms)=	0.31	0.12	
				TOTALS
PEAK FLOW	(cms)=	0.13	0.30	0.376 (iii)
TIME TO PEAK	(hrs)=	1.17	1.25	1.17
RUNOFF VOLUME	(mm)=	86.06	42.75	48.38
TOTAL RAINFALL	(mm)=	87.06	87.06	87.06
RUNOFF COEFFICIE	ENT =	0.99	0.49	0.56

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING:FOR AREAS WITH IMPERVIOUS RATIOS BELOW 20% YOU SHOULD CONSIDER SPLITTING THE AREA.

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 74.8 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0008)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0005):	2.24	0.094	2.17	43.42

+ ID2= 2 (0006): 1.89 0.376 1.17 48.38 _____ ID = 3 (0008): 4.13 0.4081.25 45.69 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ -----ADD HYD (0008) AREA QPEAK TPEAK (ha) (cms) (hrs) 3 + 2 = 1 R.V. (mm) -----ID1= 3 (0008): 4.13 0.408 1.25 45.69 + ID2= 2 (0007): 0.46 0.216 1.17 71.46 _____ ID = 1 (0008): 4.59 0.600 1.17 48.29 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ADD HYD (0019)

 + 2 = 3
 |
 AREA
 QPEAK
 TPEAK
 R.V.

 ----- (ha)
 (cms)
 (hrs)
 (mm)

 ID1= 1
 (0017):
 3.68
 0.470
 1.25
 49.49

 + ID2= 2
 (0018):
 0.49
 0.136
 1.17
 59.06

 1 + 2 = 3 -----------ID = 3 (0019): 4.17 0.591 1.25 50.61 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ADD HYD (0019) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 3 + 2 = 1 -----ID1= 3 (0019): 4.17 0.591 1.25 50.61 + ID2= 2 (0008): 4.59 0.600 1.17 48.29 _____ ID = 1 (0019): 8.76 1.143 1.17 49.39 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. FINISH

APPENDIX D

Post-Development Conditions Stormwater Management Analysis

Post-Development SCS Numbers (weighted calculations) Stage-Storage-Discharge Tables Post-Development Condition Modelling results Roadside Ditch flow velocity calculation

FLOW VELOCITY CACULATION DITCH AT CATCHMENT 100 (FROM FHWA HYDRAULIC TOOLBOX 5.2)

FLOW VELOCITY CACULATION DITCH AT CATCHMENT 200 (FROM FHWA HYDRAULIC TOOLBOX 5.2)

hannel Analysis					
	_	Define	Parameter	Value	Units
rype. mangulai	<u> </u>	D'OINIG	Flow	0.043	cms
Side Slope 1 (Z1):	3.0	H : 1V	Depth	0.165	m
Side Slope 2 (Z2):	3.0	H : 1V	Area of Flow	0.082	m^2
Channel Width (B):	0.0	(m)	Wetted Perimeter	1.046	m
Pine Diameter (D):	, n n	(m)	Hydraulic Radius	0.078	m
Lanaitudinal Classe	0.01	(m) (m den)	Average Velocity	0.524	m/s
Longitudinal Slope:	0.01	(m/mj	Top Width (T)	0.993	m
Manning's Roughness:	0.0350		Froude Number	0.581	
			Critical Depth	0.133	m
			Critical Velocity	0.808	m/s
Enter Flow:	0.043	(cms)	Critical Slope	0.03182	m/m
C Enter Depth:	0.165	(m)	Critical Top Width	0.799	m
S Enter Depth.	0.165	(11)	Calculated Max Shear Stress	16.216	N/m^2
			Calculated Avg Shear Stress	7.692	N/m [~] 2
Calci	ulate				
Plot	Compu	te Curves			
			ОК		ancel
Triangular Channel - [Double clic	k in plot for op	tions -	_	
	Tr	iangular	Channel		

0.5

Station (m)

1.0

0

Ó

FLOW VELOCITY CACULATION DITCH AT CATCHMENT 500 (FROM FHWA HYDRAULIC TOOLBOX 5.2)

		aranrann	1511									
Channel Analysis				×								
Type: Triangular	▼ Define	Parameter	Value	Units								
		Flow	0.042	cms								
Side Slope 1 (Z1):	3.0 H : 1V	Depth	0.164	m								
Side Slope 2 (Z2):	3.0 H : 1V	Area of Flow	0.081	m^2								
Channel Width (B):	0.0 (m)	Wetted Perimeter	1.037	m								
Pipe Diameter (D):		Hydraulic Radius	0.078	m								
		Average Velocity	0.521	m/s								
Longitudinal Slope:	[U.U1 [m/m]	Top Width (T)	0.984	m								
Manning's Roughness:	0.0350	Froude Number	0.580									
		Critical Depth	0.132	m								
		Critical Velocity	0.805	m/s								
Enter Flowr	0.042 (cms)	Critical Slope	0.03192	m/m								
		Critical Top Width	0.791	m								
C Enter Depth:	0.164 (m)	Calculated Max Shear Stress	16.074	N/m^2								
		Calculated Avg Shear Stress	7.624	N/m^2								
Calcu	ulate											
Plot	Compute Curves											
		<u>ОК</u>		Cancel								
III Triangular Channel - D	Double click in plot for o	ptions -	-	X								
	Triangular Channel											
-												

APPENDIX E

Water Balance Calculations

Recharge Runoff											
Month	Existing Condition TOTAL RECHARGE (m ³)	Post- Development Recharge (m ³)	Infiltration Cell Recharge* (m ³)	Post-Development TOTAL RECHARGE (m ³)	Total Difference (m³)	Total Difference (%)	Existing Condition (m ³)	Post-Development (no infiltration) (m ³)	Catchment 400 Infiltration (m ³)	Total Difference (m ³)	Total Difference (%)
January	422	395	34	429	7	2%	422	488	0	66	16%
February	211	198	17	214	4	2%	211	244	0	33	16%
March	105	99	8	107	2	2%	105	122	0	16	16%
April	2,124	1,899	145	2,044	-80	-4%	2,124	2,350	0	227	11%
Мау	5,726	5,128	393	5,522	-204	-4%	5,726	6,347	0	621	11%
June	2,863	2,747	244	2,991	128	4%	2,863	3,384	0	521	18%
July	1,432	1,571	173	1,745	313	22%	1,432	1,921	0	489	34%
August	716	961	132	1,093	378	53%	716	1,163	0	447	62%
September	358	610	100	710	352	98%	358	731	0	373	104%
October	179	367	66	432	253	142%	179	437	0	258	144%
November	1,838	1,715	144	1,858	20	1%	1,838	2,116	0	278	15%
December	841	790	67	857	16	2%	841	974	0	133	16%
Annual Total	16,814	16,479	1,523	18,002	1,188	7%	16,814	20,275	0	3,461	21%

* Assumed that runoff volume fromt Catchment 400 will be infiltrated by the proposed infiltration gallery

5782 6th Line East Township of Guelph/Eramosa Monthly Water Balance Summary

PRE-DEVELOPMENT CONDITIONS

Contributing Catchments:	Current farm site	Soil Type:	Silt Loam	Calculated Summary		
		Vegetation:	Shallow-Rooted Crops	Total ET	49,502	m3
Contributing Area =	8.788 ha	Root Zone Depth	0.62 m	Total Runoff	16,814	m3
Percent Impervious =	0.0%	Soil Moisture Retention Capacity (mm) =	125 mm	Total Recharge	16,814	m3
		Impervious ET Constant =	183 mm	Error	-0.01%	

Month	Daily Average Temperature	Monthly Heat Index (I)	PET Adjustment Factor	Mean Monthly Daylight Hours	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET	Moisture Deficit (D)	Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff (SMRO)	Total Runoff and Recharge (TR)	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)	(x12 hrs)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9	0.0	261.5	0.0	0.0	0.0	0.0	0.0	0.0	9.6	0.0	9.6	4.8	422	422
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9	0.0	317.4	0.0	0.0	0.0	0.0	0.0	0.0	4.8	0.0	4.8	2.4	211	211
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6	0.0	377.0	0.0	0.0	0.0	0.0	0.0	0.0	2.4	0.0	2.4	1.2	105	105
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9	0.0	125.0	0.0	30.2	30.2	0.0	0.0	43.9	23.1	25.2	48.3	24.2	2,124	2,124
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7	0.0	125.0	0.0	76.2	76.2	0.0	0.0	10.7	16.9	113.4	130.3	65.2	5,726	5,726
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	99.0	-26.0	109.8	109.8	0.0	2.4	0.0	8.5	56.7	65.2	32.6	2,863	2,863
Jul	20	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	69.0	-30.0	119.2	119.2	0.0	13.4	0.0	4.2	28.4	32.6	16.3	1,432	1,432
Aug	19	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	60.0	-9.0	105.6	105.6	0.0	9.6	0.0	2.1	14.2	16.3	8.1	716	716
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1	0.0	75.1	15.1	78.0	78.0	0.0	0.0	0.0	1.1	7.1	8.1	4.1	358	358
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2	0.0	115.3	40.2	37.1	37.1	0.0	0.0	0.0	0.5	3.5	4.1	2.0	179	179
Nov	2.1	0.3	0.3	24.0	7.2	93	85.8	0.0	125.0	9.8	7.2	7.2	0.0	0.0	76.1	38.3	3.5	41.8	20.9	1,838	1,838
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6	0.0	193.6	0.0	0.0	0.0	0.0	0.0	0.0	19.1	0.0	19.1	9.6	841	841
Total		35.1			588.7	945.9	357.2	-190.7			563.3	563.3	0.0	25.4	130.6	130.7	252.0	382.7	191.3	16,814	16,814
						Snow months										50% of					

Notes: Precipitation and Temperature data from Environment Canada Climate Normals 1981-2010

Canadian Climate Normals - Climate - Environment and Climate Change Canada (weather.gc.ca)

Monthly water balance strategy as outlined in the document Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance (Thornthwaite and Mather, 1957)

Monthy Heat Index (I) from Table 2 of Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance

Correction Factors from Table 6 of Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance

Infiltration Factor as per MOE Manual (Tab 2)

Runoff Factor = [(Impervious Percentage of Site x Average Annual Runoff for Impervious Surfaces) + (Pervious Silt Percentage of Site x Average Annual Runoff for Pervious Silt Surfaces)] / Total Annual Recharge & Runoff

5782 6th Line East Township of Guelph/Eramosa August/17/2023 Pre-Development Conditions Monthly Water Balance

Runoff Factor =0.50ET Factor for Impervious Surfaces =0.32

50% of

Page 1 of 1

POST-DEVELOPMENT CONDITIONS

Contributing Catchments:	Current farm site	Soil Type:	Calculated Summary	-		
		Vegetation:	Shallow-Rooted Crops	Total ET	43,763	m3
Contributing Area =	8.454 ha	Root Zone Depth	0.62 m	Total Runoff	20,275	m3
Percent Impervious =	12.0%	Soil Moisture Retention Capacity (mm) =	125 mm	Total Recharge	15,931	m3
		Impervious ET Constant =	183 mm	Error	0.00%	

Month	Daily Average Temperature	Monthly Heat Index (I)	PET Adjustment Factor	Mean Monthly Daylight Hours	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	ΔS	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET	Moisture Deficit (D)	Moisture Surplus (S)	Water Runoff (RO)	Snow Melt Runoff (SMRO)	Total Runoff and Recharge (TR)	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)	(x12 hrs)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9	0.0	261.5	0.0	0.0	0.0	0.0	0.0	0.0	10.3	0.0	10.3	5.8	488	383
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9	0.0	317.4	0.0	0.0	0.0	0.0	0.0	0.0	5.2	0.0	5.2	2.9	244	192
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6	0.0	377.0	0.0	0.0	0.0	0.0	0.0	0.0	2.6	0.0	2.6	1.4	122	96
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9	0.0	125.0	0.0	30.2	27.8	2.4	2.4	46.3	24.4	25.2	49.6	27.8	2,350	1,847
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7	0.0	125.0	0.0	76.2	70.0	6.2	6.2	16.9	20.7	113.4	134.1	75.1	6,347	4,987
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	99.0	-26.0	109.8	100.9	8.9	11.3	8.9	14.8	56.7	71.5	40.0	3,384	2,659
Jul	20	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	69.0	-30.0	119.2	109.5	9.7	23.1	9.7	12.2	28.4	40.6	22.7	1,921	1,509
Aug	19	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	60.0	-9.0	105.6	97.0	8.6	18.2	8.6	10.4	14.2	24.6	13.8	1,163	914
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1	0.0	75.1	15.1	78.0	71.7	6.3	6.3	6.3	8.4	7.1	15.4	8.6	731	574
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2	0.0	115.3	40.2	37.1	34.0	3.0	3.0	3.0	5.7	3.5	9.2	5.2	437	343
Nov	2.1	0.3	0.3	24.0	7.2	93	85.8	0.0	125.0	9.8	7.2	6.6	0.6	0.6	76.6	41.2	3.5	44.7	25.0	2,116	1,663
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6	0.0	193.6	0.0	0.0	0.0	0.0	0.0	0.0	20.6	0.0	20.6	11.5	974	765
Total		35.1			588.7	945.9	357.2	-190.7			563.3	517.7	45.6	71.1	176.2	176.3	252.0	428.3	239.8	20,275	15,931
						Snow months										50% of					

Notes: Precipitation and Temperature data from Environment Canada Climate Normals 1981-2010

Canadian Climate Normals - Climate - Environment and Climate Change Canada (weather.gc.ca)

Monthly water balance strategy as outlined in the document Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance (Thornthwaite and Mather, 1957)

Monthy Heat Index (I) from Table 2 of Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance

Correction Factors from Table 6 of Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance

Infiltration Factor as per MOE Manual (Tab 2)

Runoff Factor = [(Impervious Percentage of Site x Average Annual Runoff for Impervious Surfaces) + (Pervious Silt Percentage of Site x Average Annual Runoff for Pervious Silt Surfaces)] / Total Annual Recharge & Runoff

5782 6th Line East Township of Guelph/Eramosa August/17/2023 Post-Development Conditions Monthly Water Balance

Runoff Factor =0.56ET Factor for Impervious Surfaces =0.32

50% of

Station NameFergus Shand DamLatitude43.7 degrees N

POST-DEVELOPMENT CONDITIONS (INFILTRATION GALLERY, CATCHMENT 400)

Contributing Catchments:	Current farm site	Soil Type:	Silt Loam	Calculated Summary			
		Vegetation:	Shallow-Rooted Crops	Total ET	1,419	m3	
Contributing Area =	0.369 ha	Root Zone Depth	0.62 m	Total Runoff	1,523	m3	
Percent Impervious =	47.0%	Soil Moisture Retention Capacity (mm) =	125 mm	Total Recharge	549	m3	
		Impervious ET Constant =	183 mm	Error	0.00%		

Month	Daily Average Temperature	Monthly Heat Index (I)	PET Adjustment Factor	Mean Monthly Daylight Hours	Adjusted Potential Evapotranspiration (PE)	Average Precipitation (P)	P-PE	Accum. Pot. Water Loss	Storage (ST)	$\Delta \mathbf{S}$	Pervious ET	Actual Evapotrans- piration (AE)	Pervious ET - Actual ET	Moisture Deficit (D)	Moisture Surplus (S)
	(°C)		(mm)	(x12 hrs)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		(mm)	(mm)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9	0.0	261.5	0.0	0.0	0.0	0.0	0.0	0.0
Feb	-6.3	0.0	0.0	24.3	0.0	55.9	55.9	0.0	317.4	0.0	0.0	0.0	0.0	0.0	0.0
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6	0.0	377.0	0.0	0.0	0.0	0.0	0.0	0.0
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9	0.0	125.0	0.0	30.2	20.6	9.6	9.6	53.5
May	12.2	3.9	2.0	38.1	76.2	86.9	10.7	0.0	125.0	0.0	76.2	52.0	24.2	24.2	34.9
Jun	17.5	6.7	2.9	38.7	112.2	83.8	-28.4	-28.4	99.0	-26.0	109.8	75.0	34.8	37.3	34.8
Jul	20	8.2	3.4	39.0	132.6	89.2	-43.4	-71.8	69.0	-30.0	119.2	81.4	37.8	51.2	37.8
Aug	19	7.6	3.2	36.0	115.2	96.6	-18.6	-90.4	60.0	-9.0	105.6	72.1	33.5	43.1	33.5
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1	0.0	75.1	15.1	78.0	53.2	24.8	24.8	24.8
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2	0.0	115.3	40.2	37.1	25.3	11.8	11.8	11.8
Nov	2.1	0.3	0.3	24.0	7.2	93	85.8	0.0	125.0	9.8	7.2	4.9	2.3	2.3	78.3
Dec	-3.9	0.0	0.0	22.8	0.0	68.6	68.6	0.0	193.6	0.0	0.0	0.0	0.0	0.0	0.0
Total		35.1			588.7	945.9	357.2	-190.7			563.3	384.6	178.7	204.2	309.3
						Snow months									

Notes: Precipitation and Temperature data from Environment Canada Climate Normals 1981-2010

Canadian Climate Normals - Climate - Environment and Climate Change Canada (weather.gc.ca)

Monthly water balance strategy as outlined in the document Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance (Thornthwaite and Mather, 1957)

Monthy Heat Index (I) from Table 2 of Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance

Correction Factors from Table 6 of Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance

Infiltration Factor as per MOE Manual (Tab 2)

Runoff Factor = [(Impervious Percentage of Site x Average Annual Runoff for Impervious Surfaces) + (Pervious Silt Percentage of Site x Average Annual Runoff for Pervious Silt Surfaces)] / Total Annual Recharge & Runoff

5782 6th Line East Township of Guelph/Eramosa August/17/2023 Post-Development Conditions Monthly Water Balance

Runoff Factor =0.74ET Factor for Impervious Surfaces =0.32

Water Runoff (RO)	Snow Melt Runoff (SMRO)	Total Runoff and Recharge (TR)	Actual Runoff	Runoff Volume	Recharge Volume
(mm)	(mm)	(mm)	(mm)	(m ³)	(m ³)
12.4	0.0	12.4	9.1	34	12
6.2	0.0	6.2	4.6	17	6
3.1	0.0	3.1	2.3	8	3
28.3	25.2	53.5	39.3	145	52
31.6	113.4	145.0	106.6	393	142
33.2	56.7	89.9	66.1	244	88
35.5	28.4	63.9	46.9	173	62
34.5	14.2	48.7	35.8	132	48
29.6	7.1	36.7	27.0	100	36
20.7	3.5	24.2	17.8	66	24
49.5	3.5	53.1	39.0	144	52
24.8	0.0	24.8	18.2	67	24
309.4	252.0	561.4	412.6	1,523	549

50% of